987 resultados para Carotid Intima-Media Thickness
Resumo:
A two-dimensional reaction-diffusion front which propagates in a modulated medium is studied. The modulation consists of a spatial variation of the local front velocity in the transverse direction to that of the front propagation. We study analytically and numerically the final steady-state velocity and shape of the front, resulting from a nontrivial interplay between the local curvature effects and the global competition process between different maxima of the control parameter. The transient dynamics of the process is also studied numerically and analytically by means of singular perturbation techniques.
Resumo:
The propagation of an initially planar front is studied within the framework of the photosensitive Belousov-Zhabotinsky reaction modulated by a smooth spatial variation of the local front velocity in the direction perpendicular to front propagation. Under this modulation, the wave front develops several fingers corresponding to the local maxima of the modulation function. After a transient, the wave front achieves a stationary shape that does not necessarily coincide with the one externally imposed by the modulation. Theoretical predictions for the selection criteria of fingers and steady-state velocity are experimentally validated.
Resumo:
We show that external fluctuations induce excitable behavior in a bistable spatially extended system with activator-inhibitor dynamics of the FitzHugh-Nagumo type. This can be understood as a mechanism for sustained signal propagation in bistable media. The phase diagram of the stochastic system is analytically obtained and numerically verified. For small-noise intensities, front propagation becomes unstable, and excitable pulses arise as the only possible spatiotemporal behavior of the system. For large-noise intensities, on the other hand, the system enters an effective regime of oscillatory behavior, where it exhibits spontaneous nucleation of pulses and synchronized firing.
Resumo:
The behavior of chemical waves advancing through a disordered excitable medium is investigated in terms of percolation theory and autowave properties in the framework of the light-sensitive Belousov-Zhabotinsky reaction. By controlling the number of sites with a given illumination, different percolation thresholds for propagation are observed, which depend on the relative wave transmittances of the two-state medium considered.
Resumo:
In this article we report our systematic studies of the dependence on the sample thickness of the onset parameters of the instability of the nematic-isotropic interface during directional growth and melting, in homeotropic or planar anchoring.
Resumo:
Scroll waves in excitable media, described by the Barkley model, are studied. In the parameter region of weak excitability, negative tension of wave filaments is found. It leads to expansion of scroll rings and instability of wave filaments. A circular filament tends to stretch, bend, loop, and produce an expanding tangle that fills up the volume. The filament does not undergo fragmentation before it touches the boundaries. Statistical properties of such Winfree turbulence of scroll waves are numerically investigated.
Resumo:
By simulations of the Barkley model, action of uniform periodic nonresonant forcing on scroll rings and wave turbulence in three-dimensional excitable media is investigated. Sufficiently strong rapid forcing converts expanding scroll rings into the collapsing ones and suppresses the Winfree turbulence caused by the negative tension of wave filaments. Slow strong forcing has an opposite effect, leading to expansion of scroll rings and induction of the turbulence. These effects are explained in the framework of the phenomenological kinematic theory of scroll waves.
Resumo:
AIMS: The time course of atherosclerosis burden in distinct vascular territories remains poorly understood. We longitudinally evaluated the natural history of atherosclerotic progression in two different arterial territories using high spatial resolution magnetic resonance imaging (HR-MRI), a powerful, safe, and non-invasive tool. METHODS AND RESULTS: We prospectively studied a cohort of 30 patients (mean age 68.3, n = 9 females) with high Framingham general cardiovascular disease 10-year risk score (29.5%) and standard medical therapy with mild-to-moderate atherosclerosis intra-individually at the level of both carotid and femoral arteries. A total of 178 HR-MRI studies of carotid and femoral arteries performed at baseline and at 1- and 2-year follow-up were evaluated in consensus reading by two experienced readers for lumen area (LA), total vessel area (TVA), vessel wall area (VWA = TVA - LA), and normalized wall area index (NWI = VWA/TVA). At the carotid level, LA decreased (-3.19%/year, P = 0.018), VWA increased (+3.83%/year, P = 0.019), and TVA remained unchanged. At the femoral level, LA remained unchanged, VWA and TVA increased (+5.23%/year and +3.11%/year, both P < 0.01), and NWI increased for both carotid and femoral arteries (+2.28%/year, P = 0.01, and +1.8%/year, P = 0.033). CONCLUSION: The atherosclerotic burden increased significantly in both carotid and femoral arteries. However, carotid plaque progression was associated with negative remodelling, whereas the increase in femoral plaque burden was compensated by positive remodelling. This finding could be related to anatomic and flow differences and/or to the distinct degree of obstruction in the two arterial territories.
Resumo:
A study of a stable front propagating in a turbulent medium is presented. The front is generated through a reaction-diffusion equation, and the turbulent medium is statistically modeled using a Langevin equation. Numerical simulations indicate the presence of two different dynamical regimes. These regimes appear when the turbulent flow either wrinkles a still rather sharp propagating interfase or broadens it. Specific dependences of the propagating velocities on stirring intensities appropriate to each case are found and fitted when possible according to theoretically predicted laws. Different turbulent spectra are considered.
Resumo:
A pacemaker, regularly emitting chemical waves, is created out of noise when an excitable photosensitive Belousov-Zhabotinsky medium, strictly unable to autonomously initiate autowaves, is forced with a spatiotemporal patterned random illumination. These experimental observations are also reproduced numerically by using a set of reaction-diffusion equations for an activator-inhibitor model, and further analytically interpreted in terms of genuine coupling effects arising from parametric fluctuations. Within the same framework we also address situations of noise-sustained propagation in subexcitable media.
Resumo:
The MIT-Scan-T2 device is marketed as a non-destructive way to determine pavement thickness on both HMA and PCC pavements. PCC pavement thickness determination is an important incentivedisincentive measurement for the Iowa DOT and contractors. The thickness incentive can be as much as 3% of the concrete contact unit price and the disincentive can be as severe as remove and replace. This study evaluated the potential of the MIT device for PCC pavement thickness quality assurance. The limited testing indicates the unit is sufficiently repeatable and accurate enough to replace core drilling as the thickness measurement method. Further study is needed to statistically establish the single user and multi-user/device precision as well as establish an appropriate sampling protocol and PWL specification.