873 resultados para Carbon steel
Resumo:
We reported the thermal conductivity of the two-dimensional carbon nanotube (CNT)-based architecture, which can be constructed through welding of single-wall CNTs by electron beam. Using large-scale nonequilibrium molecular dynamics simulations, the thermal conductivity is found to vary with different junction types due to their different phonon scatterings at the junction. The strong length and strain dependence of the thermal conductivity suggests an effective avenue to tune the thermal transport properties of the CNT-based architecture, benefiting the design of nanoscale thermal rectifiers or phonon engineering.
Resumo:
Flexible graphene-based thin film supercapacitors were made using carbon nanotube (CNT) films as current collectors and graphene films as electrodes. The graphene sheets were produced by simple electrochemical exfoliation, while the graphene films with controlled thickness were prepared by vacuum filtration. The solid-state supercapacitor was made by using two graphene/CNT films on plastic substrates to sandwich a thin layer of gelled electrolyte. We found that the thin graphene film with thickness <1 μm can greatly increase the capacitance. Using only CNT films as electrodes, the device exhibited a capacitance as low as ~0.4 mF cm−2, whereas by adding a 360 nm thick graphene film to the CNT electrodes led to a ~4.3 mF cm−2 capacitance. We experimentally demonstrated that the conductive CNT film is equivalent to gold as a current collector while it provides a stronger binding force to the graphene film. Combining the high capacitance of the thin graphene film and the high conductivity of the CNT film, our devices exhibited high energy density (8–14 Wh kg−1) and power density (250–450 kW kg−1).
Resumo:
The aims of the project were to scope and develop sustainable energy curriculum frameworks for Australian higher education Institutions that meet the needs of Australian and international student graduates and employers, both now and into the near future. The focus was on student centred learning and outcomes and to support graduates with the knowledge, skills and generic attributes required to work in the rapidly expanding sustainable energy industry in Australia and globally. The outputs of the project are designed to be relevant to specialist Sustainable Engineering and Energy Studies programs, as well as conventional engineering, science and humanities and social science programs that have a sustainable energy focus or major.
Resumo:
Glassy carbon (GC) electrode modified with a self-assembled monolayer (SAM) of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) was used for the selective and highly sensitive determination of nitric oxide (NO). The SAM of 4α-CoIITAPc was formed on GC electrode by spontaneous adsorption from DMF containing 1 mM 4α-CoIITAPc. The SAM showed two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2 in 0.2 M phosphate buffer (PB) solution (pH 2.5). The SAM modified electrode showed excellent electrocatalytic activity towards the oxidation of nitric oxide (NO) by enhancing its oxidation current with 310 mV less positive potential shift when compared to bare GC electrode. In amperometric measurements, the current response for NO oxidation was linearly increased in the concentration range of 3×10−9 to 30×10−9 M with a detection limit of 1.4×10−10 M (S/N=3). The proposed method showed a better recovery for NO in human blood serum samples.
Resumo:
Spontaneous adsorption of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) on glassy carbon (GC) electrode leads to the formation of a stable self-assembled monolayer (SAM). Since the SAM of 4α-CoIITAPc is redox active, its adsorption on GC electrode was followed by cyclic voltammetry. SAM of 4α-CoIITAPc on GC electrode shows two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2. The surface coverage (Γ) value, calculated by integrating the charge under CoII oxidation, was used to study the adsorption thermodynamics and kinetics of 4α-CoIITAPc on GC surface. Cyclic voltammetric studies show that the adsorption of 4α-CoIITAPc on GC electrode has reached the saturation coverage (Γs) within 3 h. The Γs value for the SAM of 4α-CoIITAPc on GC electrode was found to be 2.37 × 10−10 mol cm−2. Gibbs free energy (ΔGads) and adsorption rate constant (kad) for the adsorption of 4α-CoIITAPc on GC surface were found to be −16.76 kJ mol−1 and 7.1 M−1 s−1, respectively. The possible mechanism for the self-assembly of 4α-CoIITAPc on GC surface is through the addition of nucleophilic amines to the olefinic bond on the GC surface in addition to a meager contribution from π stacking. The contribution of π stacking was confirmed from the adsorption of unsubstituted phthalocyanatocobalt(II) (CoPc) on GC electrode. Raman spectra for the SAM of 4α-CoIITAPc on carbon surface shows strong stretching and breathing bands of Pc macrocycle, pyrrole ring and isoindole ring. Raman and CV studies suggest that 4α-CoIITAPc is adopting nearly a flat orientation or little bit tilted orientation.