849 resultados para Capacitation porcine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background A recent method determines regional gas flow of the lung by electrical impedance tomography (EIT). The aim of this study is to show the applicability of this method in a porcine model of mechanical ventilation in healthy and diseased lungs. Our primary hypothesis is that global gas flow measured by EIT can be correlated with spirometry. Our secondary hypothesis is that regional analysis of respiratory gas flow delivers physiologically meaningful results. Methods In two sets of experiments n = 7 healthy pigs and n = 6 pigs before and after induction of lavage lung injury were investigated. EIT of the lung and spirometry were registered synchronously during ongoing mechanical ventilation. In-vivo aeration of the lung was analysed in four regions-of-interest (ROI) by EIT: 1) global, 2) ventral (non-dependent), 3) middle and 4) dorsal (dependent) ROI. Respiratory gas flow was calculated by the first derivative of the regional aeration curve. Four phases of the respiratory cycle were discriminated. They delivered peak and late inspiratory and expiratory gas flow (PIF, LIF, PEF, LEF) characterizing early or late inspiration or expiration. Results Linear regression analysis of EIT and spirometry in healthy pigs revealed a very good correlation measuring peak flow and a good correlation detecting late flow. PIFEIT = 0.702 · PIFspiro + 117.4, r2 = 0.809; PEFEIT = 0.690 · PEFspiro-124.2, r2 = 0.760; LIFEIT = 0.909 · LIFspiro + 27.32, r2 = 0.572 and LEFEIT = 0.858 · LEFspiro-10.94, r2 = 0.647. EIT derived absolute gas flow was generally smaller than data from spirometry. Regional gas flow was distributed heterogeneously during different phases of the respiratory cycle. But, the regional distribution of gas flow stayed stable during different ventilator settings. Moderate lung injury changed the regional pattern of gas flow. Conclusions We conclude that the presented method is able to determine global respiratory gas flow of the lung in different phases of the respiratory cycle. Additionally, it delivers meaningful insight into regional pulmonary characteristics, i.e. the regional ability of the lung to take up and to release air.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

UNLABELLED CpG-oligodeoxynucleotides (CpG-ODNs) interact with dendritic cells (DCs), but evidence is less clear for CpG-ODN admixed with or incorporated into vaccine delivery vehicles. We loaded alginate-coated chitosan-nanogels (Ng) with class-A or class-B CpG-ODN, and compared with the same CpG-ODNs free or admixed with empty Ng. Experiments were performed on both porcine and human blood DC subpopulations. Encapsulation of class-A CpG-ODN (loading into Ng) strongly reduced the CpG-ODN uptake and intracellular trafficking in the cytosol; this was associated with a marked deficiency in IFN-α induction. In contrast, encapsulation of class-B CpG-ODN increased its uptake and did not influence consistently intracellular trafficking into the nucleus. The choice of CpG-ODN class as adjuvant is thus critical in terms of how it will behave with nanoparticulate vaccine delivery vehicles. The latter can have distinctive modulatory influences on the CpG-ODN, which would require definition for different CpG-ODN and delivery vehicles prior to vaccine formulation. FROM THE CLINICAL EDITOR This basic science study investigates the role of class-A and class-B CpG-oligodeoxynucleotides loaded into alginate-coated chitosan nanogels, demonstrating differential effects between the two classes as related to the use of these nanoformulations as vaccine delivery vehicles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Selective retina therapy (SRT) has shown great promise compared to conventional retinal laser photocoagulation as it avoids collateral damage and selectively targets the retinal pigment epithelium (RPE). Its use, however, is challenging in terms of therapy monitoring and dosage because an immediate tissue reaction is not biomicroscopically discernibel. To overcome these limitations, real-time optical coherence tomography (OCT) might be useful to monitor retinal tissue during laser application. We have thus evaluated a proprietary OCT system for its capability of mapping optical changes introduced by SRT in retinal tissue. Methods: Freshly enucleated porcine eyes, covered in DMEM upon collection were utilized and a total of 175 scans from ex-vivo porcine eyes were analyzed. The porcine eyes were used as an ex-vivo model and results compared to two time-resolved OCT scans, recorded from a patient undergoing SRT treatment (SRT Vario, Medical Laser Center Lübeck). In addition to OCT, fluorescin angiography and fundus photography were performed on the patient and OCT scans were subsequently investigated for optical tissue changes linked to laser application. Results: Biomicroscopically invisible SRT lesions were detectable in OCT by changes in the RPE / Bruch's complex both in vivo and the porcine ex-vivo model. Laser application produced clearly visible optical effects such as hyperreflectivity and tissue distortion in the treated retina. Tissue effects were even discernible in time-resolved OCT imaging when no hyper-reflectivity persisted after treatment. Data from ex-vivo porcine eyes showed similar to identical optical changes while effects visible in OCT appeared to correlate with applied pulse energy, leading to an additional reflective layer when lesions became visible in indirect ophthalmoscopy. Conclusions: Our results support the hypothesis that real-time high-resolution OCT may be a promising modality to obtain additional information about the extent of tissue damage caused by SRT treatment. Data shows that our exvivo porcine model adequately reproduces the effects occurring in-vivo, and thus can be used to further investigate this promising imaging technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The autoclaving, pasteurization, and freezing of bone grafts to remove bacteria and viruses, and for preservation, respectively, is considered to alter biological properties during graft consolidation. Fresh bone grafts release paracrine-like signals that are considered to support tissue regeneration. However, the impact of the autoclaving, pasteurization, and freezing of bone grafts on paracrine signals remains unknown. Therefore, conditioned medium was prepared from porcine cortical bone chips that had undergone thermal processing. The biological properties of the bone-conditioned medium were assessed by examining the changes in expression of target genes in oral fibroblasts. The data showed that conditioned medium obtained from bone chips that had undergone pasteurization and freezing changed the expression of adrenomedullin, pentraxin 3, BTB/POZ domain-containing protein 11, interleukin 11, NADPH oxidase 4, and proteoglycan 4 by at least five-fold in oral fibroblasts. Bone-conditioned medium obtained from autoclaved bone chips, however, failed to change the expression of the respective genes. Also, when bone-conditioned medium was prepared from fresh bone chips, autoclaving blocked the capacity of bone-conditioned medium to modulate gene expression. These in vitro results suggest that pasteurization and freezing of bone grafts preserve the release of biologically active paracrine signals, but autoclaving does not. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved. KEYWORDS: allogeneic bone; augmentation; autoclaving; autologous bone; bone bank; bone grafts; bone regeneration; bone supernatant; bone-conditioned medium; freezing; pasteurization

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Demineralized bone matrix (DBM) is used for the treatment of osseous defects. Conditioned medium from native bone chips can activate transforming growth factor (TGF)-β signaling in mesenchymal cells. The aim of the study was to determine whether processing of native bone into DBM affects the activity of the conditioned medium. METHODS: Porcine cortical bone blocks were subjected to defatting, different concentrations of hydrochloric acid and various temperatures. DBM was lyophilized, ground, and placed into culture medium. Human gingiva and periodontal fibroblasts were exposed to the respective conditioned medium (DBCM). Changes in the expression of TGF-β target genes were determined. RESULTS: DBCM altered the expression of TGF-β target genes, e.g., adrenomedullin, pentraxin 3, KN Motif And Ankyrin Repeat Domains 4, interleukin 11, NADPH oxidase 4, and BTB (POZ) Domain Containing 11, by at least five-fold. The response was observed in fibroblasts from both sources. Defatting lowered the activity of DBCM. The TGF-β receptor type I kinase inhibitor SB431542, but not the inhibitor of bone morphogenetic protein receptor dorsomorphin, blocked the effects of DBCM on gene expression. Moreover, conditioned medium obtained from commercial human DBM modulated the expression of TGF-β target genes. CONCLUSION: The findings suggest that the conditioned medium from demineralized bone matrix can activate TGF-β signaling in oral fibroblasts. KEYWORDS: TGF-beta superfamily proteins; bone; bone substitutes; bone transplantation; conditioned media; freeze drying

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lawsonia intracellularis is the causative agent of porcine proliferative enteropathy. The clinical presentation can be acute (i.e. proliferative hemorrhagic enteropathy, PHE), chronic (i.e. porcine intestinal adenomatosis, PIA) or subclinical. In humans with chronic enteropathies, low serum folate (vitamin B(9)) and cobalamin (vitamin B(12)) concentrations have been associated with increased serum concentrations of homocysteine and methylmalonic acid (MMA), which reflect the availability of both vitamins at the cellular level. The aim of this study was to evaluate serum folate, cobalamin, homocysteine and MMA concentrations in serum samples from pigs with PHE, PIA or subclinical L. intracellularis infection, and in negative controls. Serum folate, cobalamin, homocysteine and MMA concentrations differed significantly among pigs in the PHE, PIA, subclinical and negative control groups. Serum folate concentrations in the PHE and PIA groups were lower than in the subclinical and negative control groups, while serum cobalamin concentrations were lower in the PIA group than in other groups. Serum concentrations of homocysteine were higher in the PHE, PIA and subclinical groups than in the negative control group. Serum concentrations of MMA were higher in the subclinical and PIA groups than in the control group. These data suggest that pigs infected with L. intracellularis have altered serum cobalamin, folate, homocysteine and MMA concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spermadhesins belong to a novel family of secretory proteins of the male genital tract. They are major proteins of the seminal plasma and have been found peripherally associated to the sperm surface. So far, they have only been detected in ungulates, specifically in pig, cattle, and horse, respectively. Spermadhesins form a subgroup of the superfamily of proteins with a CUB-domain that has been found in a variety of developmentally regulated proteins. The structure and function of the spermadhesins have been investigated in the pig. They are multifunctional proteins showing a range of ligand-binding abilities, e.g. to carbohydrates, phospholipids, and protease inhibitors, suggesting that they may be involved in different steps of fertilization. We report here the genomic organization of the porcine spermadhesin gene cluster as well as a detailed comparative analysis with respect to other mammalian species. The porcine spermadhesin genes are located on SSC 14q28-q29 in a region syntenic to HSA 10q26. The pig contains five closely linked spermadhesin genes, whereas only two spermadhesin genes are present in the cattle genome. Inactive copies of spermadhesin genes are still detectable in the human, chimp, and dog genome while the corresponding region was lost from the rodent genomes of mouse and rat. Within the pig, the five spermadhesin genes contain both highly diverged and highly conserved regions. Interestingly, the pattern of divergence does not correlate with the position of the exons. Evolutionary analyses suggest that the pattern of diversity is shaped by ancestral variation, recombination, and new mutations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract AIM: To investigate the inflammatory response of dental pulp fibroblasts and the respective explants to whole saliva. METHODOLOGY: Explants from human and porcine dental pulp tissue and isolated dental pulp fibroblasts were used to investigate the inflammatory response to sterile saliva. Cytokine and chemokine expression was assessed by RT-PCR. Western blot analysis and pharmacologic inhibitors were used to determine the involvement of signalling pathways. RESULTS: Dental pulp explants of human and porcine origin exposed to human saliva exhibited no major changes of IL-6 and IL-8 mRNA expression (P > 0.05). In contrast, isolated porcine and human dental pulp fibroblasts, when stimulated with human saliva, exhibited a vastly increased expression of IL-6 and IL-8 mRNA (P < 0.05). In pulp fibroblasts, saliva also increased the expression of other cytokines and chemokines via activation of NFkappaB, ERK and p38 signalling. Notably, a significantly reduced inflammatory response was elicited when pulp fibroblasts were transiently exposed to saliva. CONCLUSIONS: Saliva has a potential impact on inflammation of dental pulp fibroblasts in vitro but not when cells are embedded in the intrinsic extracellular matrix of the explant tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE Autologous bone is used for augmentation in the course of oral implant placement. Bone grafts release paracrine signals that can modulate mesenchymal cell differentiation in vitro. The detailed genetic response of the bone-derived fibroblasts to these paracrine signals has remained elusive. Paracrine signals accumulate in bone-conditioned medium (BCM) prepared from porcine cortical bone chips. MATERIALS AND METHODS In this study, bone-derived fibroblasts were exposed to BCM followed by a whole genome expression profiling and downstream quantitative reverse transciptase polymerase chain reaction of the most strongly regulated genes. RESULTS The data show that ADM, IL11, IL33, NOX4, PRG4, and PTX3 were differentially expressed in response to BCM in bone-derived fibroblasts. The transforming growth factor beta (TGF-β) receptor 1 antagonist SB431542 blocked the effect of BCM on the expression of the gene panel, except for IL33. CONCLUSION These in vitro results extend existing evidence that cortical bone chips release paracrine signals that provoke a robust genetic response in mesenchymal cells that is not exclusively mediated via the TGF-β receptor. The present data provide further insights into the process of graft consolidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES To histologically evaluate the effectiveness of a porcine derived collagen matrix (CM) and a subepithelial connective tissue graft (CTG) for coverage of localized gingival recessions. MATERIALS AND METHODS Chronic single Miller Class I-like recessions were created at the buccal at the canines and at the third and fourth premolars in the upper and lower jaws of six beagle dogs. The defects were randomly treated with (1) coronally advanced flap surgery (CAF) + CM, (2) CAF + CTG, or (3) CAF alone. At 12 weeks, histometric measurements were made, e.g., between a reference point (N) - and the gingival margin (GM) - and the outer contour of the adjacent soft tissue (gingival thickness [GT]). RESULTS The postoperative healing was uneventful in all animals. No complications such as allergic reactions, abscesses or infections were noted throughout the entire study period. All three treatments resulted in coverage of localized gingival recessions. The histological analysis failed to identify any residues of CM or CTG. The histometric measurements revealed comparable outcomes for N-GM and GT values for all three groups (CAF + CM: 1.04 ± 0.69 mm/0.68 ± 0.33 mm; CAF + CTG: 1.15 ± 1.12 mm/0.76 ± 0.37 mm; CAF: 1.43 ± 0.45 mm/0.79 ± 0.24 mm). CONCLUSIONS In the used defect model, the application of CTG or CM in conjunction with CAF did not have an advantage over the use of CAF alone. CLINICAL RELEVANCE The use of CAF alone is a valuable option for the treatment localized Miller Class I recessions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Postmortem investigation is increasingly supported by Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). This led to the idea to implement a noninvasive or minimally invasive autopsy technique. Therefore, a minimally invasive angiography technique becomes necessary, in order to support the vascular cross section diagnostic. Preliminary experiments investigating different contrast agents for CT and MRI and their postmortem applicability have been performed using an ex-vivo porcine coronary model. MSCT and MRI angiography was performed in the porcine model. Three human corpses were investigated using minimally invasive MSCT angiography. Via the right femoral artery a plastic tube was advanced into the aortic arch. Using a flow adjustable pump the radiopaque contrast agent meglumine-ioxithalamate was injected. Subsequent MSCT scanning provided an excellent anatomic visualization of the human arterial system including intracranial and coronary arteries. Vascular pathologies such as calcification, stenosis and injury were detected. Limitations of the introduced approach are cases of major vessel injury and cases that show an advanced stage of decay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vitrectomy is a standard ophthalmic procedure to remove the vitreous body from the eye. The biomechanics of the vitreous affects its duration (by changing the removal rate) and the mechanical forces transmitted via the vitreous on the surrounding tissues during the procedure. Biomechanical characterization of the vitreous is essential for optimizing the design and control of instruments that operate within the vitreous for improved precision, safety, and efficacy. The measurements are carried out using a magnetic microprobe inserted into the vitreous, a method known as magnetic microrheology. The location of the probe is tracked by a microscope/camera while magnetic forces are exerted wirelessly by applied magnetic fields. In this work, in vitro artificial vitreous, ex vivo human vitreous and ex vivo porcine vitreous were characterized. In addition, in vivo rabbit measurements were performed using a suturelessly injected probe. Measurements indicate that viscoelasticity parameters of the ex vivo human vitreous are an order of magnitude different from those of the ex vivo porcine vitreous. The in vivo intra-operative measurements show typical viscoelastic behavior of the vitreous with a lower compliance than the ex vivo measurements. The results of the magnetic microrheology measurements were validated with those obtained by a standard atomic force microscopy (AFM) method and in vitro artificial vitreous. This method allows minimally-invasive characterization of localized mechanical properties of the vitreous in vitro, ex vivo, and in vivo. A better understanding of the characteristics of the vitreous can lead to improvements in treatments concerning vitreal manipulation such as vitrectomy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION Results on mitochondrial dysfunction in sepsis are controversial. We aimed to assess effects of LPS at wide dose and time ranges on hepatocytes and isolated skeletal muscle mitochondria. METHODS Human hepatocellular carcinoma cells (HepG2) were exposed to placebo or LPS (0.1, 1, and 10 μg/mL) for 4, 8, 16, and 24 hours and primary human hepatocytes to 1 μg/mL LPS or placebo (4, 8, and 16 hours). Mitochondria from porcine skeletal muscle samples were exposed to increasing doses of LPS (0.1-100 μg/mg) for 2 and 4 hours. Respiration rates of intact and permeabilized cells and isolated mitochondria were measured by high-resolution respirometry. RESULTS In HepG2 cells, LPS reduced mitochondrial membrane potential and cellular ATP content but did not modify basal respiration. Stimulated complex II respiration was reduced time-dependently using 1 μg/mL LPS. In primary human hepatocytes, stimulated mitochondrial complex II respiration was reduced time-dependently using 1 μg/mL LPS. In isolated porcine skeletal muscle mitochondria, stimulated respiration decreased at high doses (50 and 100 μg/mL LPS). CONCLUSION LPS reduced cellular ATP content of HepG2 cells, most likely as a result of the induced decrease in membrane potential. LPS decreased cellular and isolated mitochondrial respiration in a time-dependent, dose-dependent and complex-dependent manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES Oxygenation of blood and other physiological solutions are routinely required in fundamental research for both in vitro and in vivo experimentation. However, very few oxygenators with suitable priming volumes (<2-3 ml) are available for surgery in small animals. We have designed a new, miniaturized membrane oxygenator and investigated the oxygen-transfer performance using both buffer and blood perfusates. METHODS The mini-oxygenator was designed with a central perforated core-tube surrounded by parallel-oriented microporous polypropylene hollow fibres, placed inside a hollow shell with a lateral-luer outlet, and sealed at both extremities. With this design, perfusate is delivered via the core-tube to the centre of the mini-oxygenator, and exits via the luer port. A series of mini-oxygenators were constructed and tested in an in vitro perfusion circuit by monitoring oxygen transfer using modified Krebs-Henseleit buffer or whole porcine blood. Effects of perfusion pressure and temperature over flows of 5-60 ml × min(-1) were assessed. RESULTS Twelve mini-oxygenators with a mean priming volume of 1.5 ± 0.3 ml were evaluated. With buffer, oxygen transfer reached a maximum of 14.8 ± 1.0 ml O2 × l(-1) (pO2: 450 ± 32 mmHg) at perfusate flow rates of 5 ml × min(-1) and decreased with an increase in perfusate flow to 7.8 ± 0.7 ml ml O2 × l(-1) (pO2: 219 ± 24 mmHg) at 60 ml × min(-1). Similarly, with blood perfusate, oxygen transfer also decreased as perfusate flow increased, ranging from 33 ± 5 ml O2 × l(-1) at 5 ml × min(-1) to 11 ± 2 ml O2 × l(-1) at 60 ml × min(-1). Furthermore, oxygen transfer capacity remained stable with blood perfusion over a period of at least 2 h. CONCLUSIONS We have developed a new miniaturized membrane oxygenator with an ultra-low priming volume (<2 ml) and adequate oxygenation performance. This oxygenator may be of use in overcoming current limitations in equipment size for effective oxygenation in low-volume perfusion circuits, such as small animal extracorporeal circulation and ex vivo organ perfusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aortic valve replacement (AVR) is the most frequently performed procedure in valve surgery. The controversy about the optimal choice of the prosthetic valve is as old as the technique itself. Currently there is no perfect valve substitute available. The main challenge is to choose between mechanical and biological prosthetic valves. Biological valves include pericardial (bovine, porcine or equine) and native porcine bioprostheses designed in stented or stentless versions. Homografts and pulmonary autografts are reserved for special indications and will not be discussed in detail in this review. We will focus on the decision making between artificial biological and mechanical prostheses, respectively. The first part of this article reviews guideline recommendations concerning the choice of aortic prostheses in different clinical situations while the second part is focused on novel strategies in the treatment of patients with aortic valve pathology.