977 resultados para Cant coral
Resumo:
Early work on sea-levels in southwest Australia claimed to recognise a Holocene sea-level highstand which was not seen in better known sea-level records elsewhere at the time. More recent work has confirmed that a mid-Holocene highstand Occurred about 6 kyr ago. As new data on oscillating sea-levels from the region have recently been published, a high continuity, precisely dated and accurately surveyed record was obtained from emergent coral pavements in the leeward Houtman Abrolhos Islands (Serventy Island), a tectonically stable region from where good-quality Holocene sea-level data have been previously obtained from corals. From the mid-Holocene highstand ca. 7 U/Th kyr ago, sea-level declined linearly during the remainder of the Holocene as the carbonate platform prograded leewards. Hydro-isostatic controls are probably significant in the record. (c) 2005 Elsevier Ltd and INQUA. All rights reserved.
Resumo:
Accurate dating of lagoon sediments has been a difficult problem, although lagoon profiles, usually with high deposition rates, have a great potential for high-resolution climate reconstruction. We report 26 high-precision TIMS U-series dates (on 25 coral branches) and five AMS C-14 dates (on foraminifera) for a 15.4-m long lagoon core from Yongshu Reef, Nansha area, southern South China Sea. All the dates are in the correct stratigraphical sequence, providing the best chronology so far reported for lagoon deposits. The results reveal a similar to 4000-a continuous depositional history, with sedimentation rates varying from 0.8 to 24.6 mm a(-1), with an average of 3.85 mm a(-1), which corresponds to an average net carbonate accumulation rate of similar to 2700 g CaCO3 m(-2) a(-1), significantly higher than the mean value (800 +/- 400 g CaCO3 m(-2) a(-1)) used for lagoons in general in previous studies of global carbonate budget. Episodes of accelerated depositions within the last 1000 years correlate well with strong storm events identified by U-series dates of storm-transported coral blocks in the area. However, in the longer term, the sedimentation rates during the past 1000 years were much higher than earlier on, probably due to more vigorous wave-reef interaction as a result of relative sea-level fall since 500 AD and expansion of reef flat area, supplying more sediments. The coral TIMS U-series ages and foraminifera AMS 14C dates reveal intriguing apparent radiocarbon reservoir ages (R) from 572 to 1052 years, which are much higher than global mean values of similar to 400 years. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The constancy of phenotypic variation and covariation is an assumption that underlies most recent investigations of past selective regimes and attempts to predict future responses to selection. Few studies have tested this assumption of constancy despite good reasons to expect that the pattern of phenotypic variation and covariation may vary in space and time. We compared phenotypic variance-covariance matrices (P) estimated for Populations of six species of distantly related coral reef fishes sampled at two locations on Australia's Great Barrier Reef separated by more than 1000 km. The intraspecific similarity between these matrices was estimated using two methods: matrix correlation and common principal component analysis. Although there was no evidence of equality between pairs of P, both statistical approaches indicated a high degree of similarity in morphology between the two populations for each species. In general, the hierarchical decomposition of the variance-covariance structure of these populations indicated that all principal components of phenotypic variance-covariance were shared but that they differed in the degree of variation associated with each of these components. The consistency of this pattern is remarkable given the diversity of morphologies and life histories encompassed by these species. Although some phenotypic instability was indicated, these results were consistent with a generally conserved pattern of multivariate selection between populations.
Resumo:
The potential role of viruses in coral disease has only recently begun to receive attention. Here we describe our attempts to determine whether viruses are present in thermally stressed corals Pavona danai, Acropora formosa and Stylophora pistillata and zoanthids Zoanthus sp., and their zooxanthellae. Heat-shocked P. danai, A. formosa and Zoanthus sp. all produced numerous virus-like particles (VLPs) that were evident in the animal tissue, zooxanthellae and the surrounding seawater; VLPs were also seen around heat-shocked freshly isolated zooxanthellae (FIZ) from P. danai and S. pistillata. The most commonly seen VLPs were tail-less, hexagonal and about 40 to 50 nm in diameter, though a diverse range of other VLP morphotypes (e.g. rounded, rod-shaped, droplet-shaped, filamentous) were also present around corals. When VLPs around heat-shocked FIZ from S. pistillata were added to non-stressed FIZ from this coral, they resulted in cell lysis, suggesting that an infectious agent was present; however, analysis with transmission electron microscopy provided no clear evidence of viral infection. The release of diverse VLPs was again apparent when flow cytometry was used to enumerate release by heat-stressed A. formosa nubbins. Our data support the infection of reef corals by viruses, though we cannot yet determine the precise origin (i.e. coral, zooxanthellae and/or surface microbes) of the VLPs seen. Furthermore, genome sequence data are required to establish the presence of viruses unequivocally.
Resumo:
An extended refraction-diffraction equation [Massel, S.R., 1993. Extended refraction-diffraction equation for surface waves. Coastal Eng. 19, 97-126] has been applied to predict wave transformation and breaking as well as wave-induced set-up on two-dimensional reef profiles of various shapes. A free empirical coefficient alpha in a formula for the average rate of energy dissipation [epsilon(b)] = (alpha rho g omega/8 pi)(root gh/C)(H-3/h) in the modified periodic bore model was found to be a function of the dimensionless parameter F-c0 = (g(1.25)H(0)(0.5)T(2.5))/h(r)(1.75), proposed by Gourlay [Gourlayl M.R., 1994. Wave transformation on a coral reef. Coastal Eng. 23, 17-42]. The applicability of the developed model has been demonstrated for reefs of various shapes subjected to various incident wave conditions. Assuming proposed relationships of the coefficient alpha and F-c0, the model provides results on wave height attenuation and set-up elevation which compare well with experimental data. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Coral reefs, excellent climatic and environmental archives in tropical oceans, are widely distributed in the South China Sea (SCS), which is the largest enclosed marginal sea of western Pacific, covering over 20° in latitude and different climate conditions. Our recent research in the SCS focuses on coral-based high-resolution climate reconstruction and coral reef ecological responses using geochemical and U-series geochronological tools, which provide an ideal opportunity for understanding of Holocene climate processes and events. Some major research highlights are summarized below: