949 resultados para CYCLE LASER-PULSES
Resumo:
The microstructure and mechanical properties of sintered stainless steel powder, of composition AISI 420, have been measured. Ball-milled powder comprising nanoscale grains was sintered to bulk specimens by two alternative routes: hot-pressing and microlaser sintering. The laser-sintered alloy has a porosity of 6% and comprises a mixture of delta ferrite and tempered martensite, and the relative volume fraction varies along the axis of the specimen due to a thermal cycle that evolves with progressive deposition. In contrast, the hot-pressed alloy has a porosity of 0.7% and exhibits a martensitic lath structure with carbide particles at the boundaries of the prior austenite grains. These differences in microstructure lead to significant differences in mechanical properties. For example, the uniaxial tensile strength of the hot-pressed material is one-half of its compressive strength, due to void initiation at the carbide particles at the prior austenite grain boundaries. Nanoindentation measurements reveal a size effect in hardness and also reveal the sensitivity of hardness to the presence of mechanical polishing and electropolishing. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A Graphene-based saturable absorber is fabricated using wet chemistry techniques. We use it to passively mode-lock an Erbium doped fiber laser. ~500fs pulses are produced at 1560nm with a 5.2nm spectrum bandwidth. © 2010 Optical Society of America.
Resumo:
Combustion oscillations in gas turbines can result in serious damage. One method used to predict such oscillations is to analyze the combustor acoustics using a simple linear model. Such a model requires a flame transfer function to describe the response of the heat release to flow perturbations inside the combustor. This paper reports on the application of Planar Laser Induced Fluorescence (PLIF) of OH radicals to analyze the response of a lean premixed flame to oncoming flow perturbations. Both self-excited oscillations and low amplitude forced oscillations at various frequencies are investigated in an atmospheric pressure model combustor rig. In order to visualize fluctuations of local fuel distribution, acetone-PLIF was also applied in non-reacting and acoustically forced flows at oscillation frequencies of 200 Hz and 510 Hz, respectively. OH-PLIF images were acquired over a range of operating parameters. The results presented in this paper originate from data sets acquired at fixed phase angles during the oscillation cycle. Comparative experiments in self excited and forced acoustic oscillations show that the flame and the combustion intensity develop similarly throughout the pressure cycle in both cases. Although the peak fluorescence intensities differ between self excited and the forced instabilities, there is a clear correspondence in the observed frequency and phase information from the two cases. This result encourages a comparison of the OH-PLIF and the acetone-PLIF results. Quantitative measurements of the equivalence ratio in specific areas of the measurement plane offer insight on the complex phenomena coupling acoustic perturbations, i.e. flow velocity fluctuations, to fluctuations in fuel distribution and combustion intensity, ultimately resulting in self excited combustion oscillations.
Resumo:
Sub-picosecond tunable ultrafast lasers are important tools for many applications. Here we present an ultrafast tunable fiber laser mode-locked by a nanotube based saturable absorber. The laser outputs ∼500fs pulses over a 33 nm range at 1.5μm. This outperforms the current achievable pulse duration from tunable nanotube mode-locked lasers. © 2012 Elsevier B.V. All rights reserved.
Resumo:
We report an erbium-doped, nanotube mode-locked fiber oscillator generating 74 fs pulses with 63 nm spectral width. This all-fiber-based laser is a simple, low-cost source for time-resolved optical spectroscopy, as well as for many applications where high resolution driven by short pulse durations is required. © 2012 American Institute of Physics.
Resumo:
We demonstrate mode-locking of a thulium-doped fiber laser operating at 1.94 μm, using a graphene-polymer based saturable absorber. The laser outputs 3.6 ps pulses, with ∼0.4 nJ energy and an amplitude fluctuation ∼0.5%, at 6.46 MHz. This is a simple, low-cost, stable and convenient laser oscillator for applications where eye-safe and low-photon-energy light sources are required, such as sensing and biomedical diagnostics. © 2012 Optical Society of America.
Resumo:
We present the first monolithically integrated semiconductor pulse source consisting of a mode-locked laser diode, Mach-Zehnder pulse picker, and semiconductor optical amplifier. Pairs of 5.6 ps pulses are generated at a 250 MHz repetition rate. © 2012 OSA.
Resumo:
A mode-locked Raman laser, using 25 m of a GeO2 doped fiber as the gain medium, is reported employing carbon nanotubes. The oscillator generates 850 ps chirped pulses, which are externally compressed to 185 ps. © 2012 OSA.
Resumo:
A monolithically integrated MLLD-modulator-MOPA is presented generating 12.5 ps pulses. The Mach-Zehnder modulator allows tunable repetition rates from 14 GHz to 109 MHz, and the MOPA boosts the peak power by 3.2 dB. © 2012 IEEE.
Resumo:
The generation of ultrashort optical pulses by semiconductor lasers has been extensively studied for many years. A number of methods, including gain-/Q-switching and different types of mode locking, have been exploited for the generation of picosecond and sub-picosecond pulses [1]. However, the shortest pulses produced by diode lasers are still much longer and weaker than those that are generated by advanced mode-locked solid-state laser systems [2]. On the other hand, an interesting class of devices based on superradiant emission from multiple contact diode laser structures has also been recently reported [3]. Superradiance (SR) is a transient quantum optics phenomenon based on the cooperative radiative recombination of a large number of oscillators, including atoms, molecules, e-h pairs, etc. SR in semiconductors can be used for the study of fundamental properties of e-h ensembles such as photon-mediated pairing, non-equilibrium e-h condensation, BSC-like coherent states and related phenomena. Due to the intrinsic parameters of semiconductor media, SR emission typically results in the generation of a high-power optical pulse or pulse train, where the pulse duration can be much less than 1 ps, under optimised bias conditions. Advantages of this technique over mode locking in semiconductor laser structures include potentially shorter pulsewidths and much larger peak powers. Moreover, the pulse repetition rate of mode-locked pulses is fixed by the cavity round trip time, whereas the repetition rate of SR pulses is controlled by the current bias and can be varied over a wide range. © 2012 IEEE.
Resumo:
We report a 2 μm ultrafast solid-state Tm: Lu2O3 laser, mode-locked by single-layer graphene, generating transform-limited ∼ 410 fs pulses, with a spectral width ∼ 11.1 nm at 2067 nm. The maximum average output power is 270 mW, at a pulse repetition frequency of 110 MHz. This is a convenient high-power transform-limited ultrafast laser at 2 μm for various applications, such as laser surgery and material processing. © 2013 American Institute of Physics.
Resumo:
We fabricate a saturable absorber mirror by coating a graphenefilm on an output coupler mirror. This is then used to obtain Q-switched mode-locking from a diode-pumped linear cavity channel waveguide laser inscribed in Ytterbium-doped Bismuthate Glass. The laser produces 1.06 ps pulses at ∼1039 nm, with a 1.5 GHz repetition rate, 48% slope efficiency and 202 mW average output power. This performance is due to the combination of the graphene saturable absorber and the high quality optical waveguides in the laser glass. © 2013 Optical Society of America.
Resumo:
This paper reviews recent advances in superradiant (SR) emission in semiconductors at room temperature, a process which has been shown to enable the generation on demand of high power picosecond or subpicosecond pulses across a range of different wavelengths. The different characteristic features of SR emission from semiconductor devices with bulk, quantum-well, and quantum-dot active regions are outlined, and particular emphasis is placed on comparing the characteristic features of SR with those of lasing. Finally, potential applications of SR pulses are discussed. © 1995-2012 IEEE.
Resumo:
Passive modelocking using carbon nanotubes is achieved in a linear cavity waveguide laser realized by ultrafast laser inscription in ytterbium doped bismuthate glass. The pulses observed under a Q-switched envelope have a repetition rate of 1.5 GHz. © 2012 OSA.
Resumo:
The RF locking of a self-Q-switching diode laser is shown to reduce the jitter of a 2.48 GHz train of 1 W peak power picosecond pulses to less than 300 fs. By using direct modulation of the loss in the Q-switched laser, direct encoding of data has been achieved at rates in excess of 2 Gbit/s.