986 resultados para CROP LOSSES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect pollinated mass flowering crops are becoming more widespread and there is a need to understand which insects are primarily responsible for the pollination of these crops so conservation measures can be appropriately targeted in the face of pollinator declines. This study used field surveys in conjunction with cage manipulations to identify the relative contributions of different pollinator taxa to the pollination of two widespread flowering crops, field beans and oilseed rape. Flower visiting pollinator communities observed in the field were distinct for each crop; while field beans were visited primarily by a few bumblebee species, multiple pollinator taxa visited oilseed, and the composition of this pollinator community was highly variable spatially and temporally. Neither pollinator community, however, appears to be meeting the demands of crops in our study regions. Cage manipulations showed that multiple taxa can effectively pollinate both oilseed and field beans, but bumblebees are particularly effective bean pollinators. Combining field observations and cage manipulations demonstrated that the pollination demands of these two mass flowering crops are highly contrasting, one would benefit from management to increase the abundance of some key taxa, whilst for the other, boosting overall pollinator abundance and diversity would be more appropriate. Our findings highlight the need for crop specific mitigation strategies that are targeted at conserving specific pollinator taxa (or group of taxa) that are both active and capable of crop pollination in order to reduce pollination deficits and meet the demands of future crop production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect pollination benefits over three quarters of the world's major crops. There is growing concern that observed declines in pollinators may impact on production and revenues from animal pollinated crops. Knowing the distribution of pollinators is therefore crucial for estimating their availability to pollinate crops; however, in general, we have an incomplete knowledge of where these pollinators occur. We propose a method to predict geographical patterns of pollination service to crops, novel in two elements: the use of pollinator records rather than expert knowledge to predict pollinator occurrence, and the inclusion of the managed pollinator supply. We integrated a maximum entropy species distribution model (SDM) with an existing pollination service model (PSM) to derive the availability of pollinators for crop pollination. We used nation-wide records of wild and managed pollinators (honey bees) as well as agricultural data from Great Britain. We first calibrated the SDM on a representative sample of bee and hoverfly crop pollinator species, evaluating the effects of different settings on model performance and on its capacity to identify the most important predictors. The importance of the different predictors was better resolved by SDM derived from simpler functions, with consistent results for bees and hoverflies. We then used the species distributions from the calibrated model to predict pollination service of wild and managed pollinators, using field beans as a test case. The PSM allowed us to spatially characterize the contribution of wild and managed pollinators and also identify areas potentially vulnerable to low pollination service provision, which can help direct local scale interventions. This approach can be extended to investigate geographical mismatches between crop pollination demand and the availability of pollinators, resulting from environmental change or policy scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods: We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient fromsimple to heterogeneous landscapes. Results: Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries’ commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in some areas, but our results suggest the need of landscape-scale actions to enhance wild pollinator populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Possible future changes of clustering and return periods (RPs) of European storm series with high potential losses are quantified. Historical storm series are identified using 40 winters of reanalysis. Time series of top events (1, 2 or 5 year return levels (RLs)) are used to assess RPs of storm series both empirically and theoretically. Additionally, 800 winters of general circulation model simulations for present (1960–2000) and future (2060–2100) climate conditions are investigated. Clustering is identified for most countries, and estimated RPs are similar for reanalysis and present day simulations. Future changes of RPs are estimated for fixed RLs and fixed loss index thresholds. For the former, shorter RPs are found for Western Europe, but changes are small and spatially heterogeneous. For the latter, which combines the effects of clustering and event ranking shifts, shorter RPs are found everywhere except for Mediterranean countries. These changes are generally not statistically significant between recent and future climate. However, the RPs for the fixed loss index approach are mostly beyond the range of pre-industrial natural climate variability. This is not true for fixed RLs. The quantification of losses associated with storm series permits a more adequate windstorm risk assessment in a changing climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1 Insects using olfactory stimuli to forage for prey/hosts are proposed to encounter a ‘reliability–detectability problem’, where the usability of a stimulus depends on its reliability as an indicator of herbivore presence and its detectability. 2 We investigated this theory using the responses of female seven-spot ladybirds Coccinella septempunctata (Coleoptera: Coccinellidae) to plant headspace chemicals collected from the peach-potato aphid Myzus persicae and four commercially available Brassica cultivars; Brassica rapa L. cultivar ‘turnip purple top’, Brassica juncea L. cultivar ‘red giant mustard’, Brassica napus L. cultivar ‘Apex’, Brassica napus L. cultivar ‘Courage’ and Arabidopsis thaliana. For each cultivar/species, responses to plants that were undamaged, previously infested by M. persicae and infested with M. persicae, were investigated using dual-choice Petri dish bioassays and circular arenas. 3 There was no evidence that ladybirds responded to headspace chemicals from aphids alone. Ladybirds significantly preferred headspace chemicals from B. napus cv. Apex that were undamaged compared with those from plants infested with aphids. For the other four species/cultivars, there was a consistent trend of the predators being recorded more often in the half of the Petri dish containing plant headspace chemicals from previously damaged and infested plants compared with those from undamaged ones. Furthermore, the mean distance ladybirds walked to reach aphid-infested A. thaliana was significantly shorter than to reach undamaged plants. These results suggest that aphid-induced plant chemicals could act as an arrestment or possibly an attractant stimulus to C. septempunctata. However, it is also possible that C. septempunctata could have been responding to aphid products, such as honeydew, transferred to the previously damaged and infested plants. 4 The results provide evidence to support the ‘reliability–detectability’ theory and suggest that the effectiveness of C. septempunctata as a natural enemy of aphids may be strongly affected by which species and cultivar of Brassica are being grown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Future land cover will have a significant impact on climate and is strongly influenced by the extent of agricultural land use. Differing assumptions of crop yield increase and carbon pricing mitigation strategies affect projected expansion of agricultural land in future scenarios. In the representative concentration pathway 4.5 (RCP4.5) from phase 5 of the Coupled Model Intercomparison Project (CMIP5), the carbon effects of these land cover changes are included, although the biogeophysical effects are not. The afforestation in RCP4.5 has important biogeophysical impacts on climate, in addition to the land carbon changes, which are directly related to the assumption of crop yield increase and the universal carbon tax. To investigate the biogeophysical climatic impact of combinations of agricultural crop yield increases and carbon pricing mitigation, five scenarios of land-use change based on RCP4.5 are used as inputs to an earth system model [Hadley Centre Global Environment Model, version 2-Earth System (HadGEM2-ES)]. In the scenario with the greatest increase in agricultural land (as a result of no increase in crop yield and no climate mitigation) there is a significant -0.49 K worldwide cooling by 2100 compared to a control scenario with no land-use change. Regional cooling is up to -2.2 K annually in northeastern Asia. Including carbon feedbacks from the land-use change gives a small global cooling of -0.067 K. This work shows that there are significant impacts from biogeophysical land-use changes caused by assumptions of crop yield and carbon mitigation, which mean that land carbon is not the whole story. It also elucidates the potential conflict between cooling from biogeophysical climate effects of land-use change and wider environmental aims.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Break crops and multi-crop rotations are common in arable farm management, and the soil quality inherited from a previous crop is one of the parameters that determine the gross margin that is achieved with a given crop from a given parcel of land. In previous work we developed a dynamic economic model to calculate the potential yield and gross margin of a set of crops grown in a selection of typical rotation scenarios, and we reported use of the model to calculate coexistence costs for GM maize grown in a crop rotation. The model predicts economic effects of pest and weed pressures in monthly time steps. Validation of the model in respect of specific traits is proceeding as data from trials with novel crop varieties is published. Alongside this aspect of the validation process, we are able to incorporate data representing the economic impact of abiotic stresses on conventional crops, and then use the model to predict the cumulative gross margin achievable from a sequence of conventional crops grown at varying levels of abiotic stress. We report new progress with this aspect of model validation. In this paper, we report the further development of the model to take account of abiotic stress arising from drought, flood, heat or frost; such stresses being introduced in addition to variable pest and weed pressure. The main purpose is to assess the economic incentive for arable farmers to adopt novel crop varieties having multiple ‘stacked’ traits introduced by means of various biotechnological tools available to crop breeders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of climate change impacts on the terrestrial biosphere have been completed without recognition of the integrated nature of the biosphere. Improved assessment of the impacts of climate change on food and water security requires the development and use of models not only representing each component but also their interactions. To meet this requirement the Joint UK Land Environment Simulator (JULES) land surface model has been modified to include a generic parametrisation of annual crops. The new model, JULES-crop, is described and evaluation at global and site levels for the four globally important crops; wheat, soybean, maize and rice. JULES-crop demonstrates skill in simulating the inter-annual variations of yield for maize and soybean at the global and country levels, and for wheat for major spring wheat producing countries. The impact of the new parametrisation, compared to the standard configuration, on the simulation of surface heat fluxes is largely an alteration of the partitioning between latent and sensible heat fluxes during the later part of the growing season. Further evaluation at the site level shows the model captures the seasonality of leaf area index, gross primary production and canopy height better than in the standard JULES. However, this does not lead to an improvement in the simulation of sensible and latent heat fluxes. The performance of JULES-crop from both an Earth system and crop yield model perspective is encouraging. However, more effort is needed to develop the parametrisation of the model for specific applications. Key future model developments identified include the introduction of processes such as irrigation and nitrogen limitation which will enable better representation of the spatial variability in yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is little consensus on how agriculture will meet future food demands sustainably. Soils and their biota play a crucial role by mediating ecosystem services that support agricultural productivity. However, a multitude of site-specific environmental factors and management practices interact to affect the ability of soil biota to perform vital functions, confounding the interpretation of results from experimental approaches. Insights can be gained through models, which integrate the physiological, biological and ecological mechanisms underpinning soil functions. We present a powerful modelling approach for predicting how agricultural management practices (pesticide applications and tillage) affect soil functioning through earthworm populations. By combining energy budgets and individual-based simulation models, and integrating key behavioural and ecological drivers, we accurately predict population responses to pesticide applications in different climatic conditions. We use the model to analyse the ecological consequences of different weed management practices. Our results demonstrate that an important link between agricultural management (herbicide applications and zero, reduced and conventional tillage) and earthworms is the maintenance of soil organic matter (SOM). We show how zero and reduced tillage practices can increase crop yields while preserving natural ecosystem functions. This demonstrates how management practices which aim to sustain agricultural productivity should account for their effects on earthworm populations, as their proliferation stimulates agricultural productivity. Synthesis and applications. Our results indicate that conventional tillage practices have longer term effects on soil biota than pesticide control, if the pesticide has a short dissipation time. The risk of earthworm populations becoming exposed to toxic pesticides will be reduced under dry soil conditions. Similarly, an increase in soil organic matter could increase the recovery rate of earthworm populations. However, effects are not necessarily additive and the impact of different management practices on earthworms depends on their timing and the prevailing environmental conditions. Our model can be used to determine which combinations of crop management practices and climatic conditions pose least overall risk to earthworm populations. Linking our model mechanistically to crop yield models would aid the optimization of crop management systems by exploring the trade-off between different ecosystem services.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Premature germination of resting spores as a means of protecting brassica crops from Plasmodiphora brassicae Wor., (Clubroot). Crop Protection. Clubroot disease causes substantial yield and quality losses in broadacre oil seed and intensive vegetable brassica crops worldwide. The causal microbe Plasmodiophora brassicae Wor., perennates as soil-borne dormant resting spores. Their germination is triggered by exudates from host roots. A valuable addition to sustainable integrated control strategies could be developed by identifying and synthesising the molecules responsible for stimulating resting spore germination. This paper reports experiments in which stimulatory exudates were collected from brassica roots following exposure to infective stages of P. brassicae. Analyses identified a germination signalling molecule of circa 1 kDa formed of glucose sub-units. Mass spectral analyses showed this to be a complex hexasaccharide carbohydrate with structural similarities to the components of plant cell walls. This is the first report of a host generated hexasaccharide which is capable of stimulating the germination of resting spores of P. brassicae. The implications for environmentally benign control of clubroot are discussed briefly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Annual losses of cocoa in Ghana to mirids are significant. Therefore, accurate timing of insecticide application is critical to enhance yields. However, cocoa farmers often lack information on the expected mirid population for each season to enable them to optimise pesticide use. This study assessed farmers’ knowledge and perceptions of mirid control and their willingness to use forecasting systems informing them of expected mirid peaks and time of application of pesticides. A total of 280 farmers were interviewed in the Eastern and Ashanti regions of Ghana with a structured open and closed ended questionnaire. Most farmers (87%) considered mirids as the most important insect pest on cocoa with 47% of them attributing 30-40% annual crop loss to mirid damage. There was wide variation in the timing of insecticide application as a result of farmers using different sources of information to guide the start of application. The majority of farmers (56%) do not have access to information on the type, frequency and timing of insecticides to use. However, respondents who are members of farmer groups had better access to such information. Extension officers were the preferred channel for information transfer to farmers with 72% of farmers preferring them to other available methods of communication. Almost all the respondents (99%) saw the need for a comprehensive forecasting system to help farmers manage cocoa mirids. The importance of accurate timing for mirid control based on forecasted information to farmer groups and extension officers was discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Risk attitudes are known to be sensitive to large stake variations. However, little is known on the sensitivity to moderate variations in stakes. This is important for studies that want to compare risk attitudes between countries or over time. I find that variations of ±20% affect only utility, while larger variations may affect also probability weighting. Surprisingly, the effect on weighting functions is larger for losses than for gains. It is also more pronounced for risk than for uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Older adults often experience associative memory impairments but can sometimes remember important information. The current experiments investigate potential age-related similarities and differences associate memory for gains and losses. Younger and older participants were presented with faces and associated dollar amounts, which indicated how much money the person “owed” the participant, and were later given a cued recall test for the dollar amount. Experiment 1 examined face-dollar amount pairs while Experiment 2 included negative dollar amounts to examine both gains and losses. While younger adults recalled more information relative to older adults, both groups were more accurate in recalling the correct value associated with high value faces compared to lower value faces and remembered gist-information about the values. However, negative values (losses) did not have a strong impact on recall among older adults versus younger adults, illustrating important associative memory differences between younger and older adults.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent concern over global pollinator declines has led to considerable research on the effects of pesticides on bees1, 2, 3, 4, 5. Although pesticides are typically not encountered at lethal levels in the field, there is growing evidence indicating that exposure to field-realistic levels can have sublethal effects on bees, affecting their foraging behaviour1, 6, 7, homing ability8, 9 and reproductive success2, 5. Bees are essential for the pollination of a wide variety of crops and the majority of wild flowering plants10, 11, 12, but until now research on pesticide effects has been limited to direct effects on bees themselves and not on the pollination services they provide. Here we show the first evidence to our knowledge that pesticide exposure can reduce the pollination services bumblebees deliver to apples, a crop of global economic importance. Bumblebee colonies exposed to a neonicotinoid pesticide provided lower visitation rates to apple trees and collected pollen less often. Most importantly, these pesticide-exposed colonies produced apples containing fewer seeds, demonstrating a reduced delivery of pollination services. Our results also indicate that reduced pollination service delivery is not due to pesticide-induced changes in individual bee behaviour, but most likely due to effects at the colony level. These findings show that pesticide exposure can impair the ability of bees to provide pollination services, with important implications for both the sustained delivery of stable crop yields and the functioning of natural ecosystems.