932 resultados para CONTACTS
Resumo:
We followed 100 university students in the UK for one week, instructing them to record all face-to-face, phone and digital contacts during the day as well as their positive and negative affect. We wanted to see how positive and negative affect spread around a social network while taking into account participants’ socio-demographic data, personality, general health and gratitude scores. We focused on the participants’ connections with those in their class; excluding friends and family outside this group. The data was analysed using actor-based models implemented in SIENA. Results show differences between positive and negative affect dynamics in this environment and an influence of personality traits on the average number and rate of communication.
Resumo:
This paper probes the public dimensions of the work of the twentieth-century Scottish poet W. S. Graham. It draws upon the public contacts and contexts that Graham's lyrics structure and reconfigure, in texts that have appeared to critics to demonstrate the poet's textual aloneness, his intellectual and geographical banishment. Repeatedly addressing his St Ives community of artists and writers, lovers and companions, Graham's work sets up strategic routes through a succession of publicly-minded verbal engagements. Refusing to allow one passively to listen in to the poet's isolation, the lyrics invite, rebuff, tease, avoid, dally with, and proposition audiences and interlocutors. Graham's poetry speaks from within and without tradition, location and heritage, subtly attuning readers to the politics of its handling of national allegiance, identity, class and patronage.
Resumo:
The Egyptians mesmerized the ancient Greeks for scores of years. The Greek literature and art of the classical period are especially thick with representations of Egypt and Egyptians. Yet despite numerous firsthand contacts with Egypt, Greek writers constructed their own Egypt, one that differed in significant ways from actual Egyptian history, society, and culture. Informed by recent work on orientalism and colonialism, this book unravels the significance of these misrepresentations of Egypt in the Greek cultural imagination in the fifth and fourth centuries B.C.E. Looking in particular at issues of identity, otherness, and cultural anxiety, Phiroze Vasunia shows how Greek authors constructed an image of Egypt that reflected their own attitudes and prejudices about Greece itself. He focuses his discussion on Aeschylus Suppliants; Book 2 of Herodotus; Euripides' Helen; Plato's Phaedrus, Timaeus, and Critias; and Isocrates' Busiris. Reconstructing the history of the bias that informed these writings, Vasunia shows that Egypt in these works was shaped in relation to Greek institutions, values, and ideas on such subjects as gender and sexuality, death, writing, and political and ethnic identity. This study traces the tendentiousness of Greek representations by introducing comparative Egyptian material, thus interrogating the Greek texts and authors from a cross-cultural perspective. A final chapter also considers the invasion of Egypt by Alexander the Great and shows how he exploited and revised the discursive tradition in his conquest of the country. Firmly and knowledgeably rooted in classical studies and the ancient sources, this study takes a broad look at the issue of cross-cultural exchange in antiquity by framing it within the perspective of contemporary cultural studies. In addition, this provocative and original work shows how Greek writers made possible literary Europe's most persistent and adaptable obsession: the barbarian.
Resumo:
We have calculated the equilibrium shape of the axially symmetric Plateau border along which a spherical bubble contacts a flat wall, by analytically integrating Laplace’s equation in the presence of gravity, in the limit of small Plateau border sizes. This method has the advantage that it provides closed-form expressions for the positions and orientations of the Plateau border surfaces. Results are in very good overall agreement with those obtained from a numerical solution procedure, and are consistent with experimental data. In particular we find that the effect of gravity on Plateau border shape is relatively small for typical bubble sizes, leading to a widening of the Plateau border for sessile bubbles and to a narrowing for pendant bubbles. The contact angle of the bubble is found to depend even more weakly on gravity.
Resumo:
L'étude du texte et de l'illustration de l'épisode romain dans la Suite Vulgate du Merlin du manuscrit British Library Add. 10292 (XIVe s.) permet d'explorer la relation entre l'amplification cyclique à l'œuvre dans ce passage au statut textuel complexe et le développement spécifique d'une série voire d'un cycle d'illustrations.
Resumo:
The migration of liquids in porous media, such as sand, has been commonly considered at high saturation levels with liquid pathways at pore dimensions. In this letter we reveal a low saturation regime observed in our experiments with droplets of extremely low volatility liquids deposited on sand. In this regime the liquid is mostly found within the grain surface roughness and in the capillary bridges formed at the contacts between the grains. The bridges act as variable-volume reservoirs and the flow is driven by the capillary pressure arising at the wetting front according to the roughness length scales. We propose that this migration (spreading) is the result of interplay between the bridge volume adjustment to this pressure distribution and viscous losses of a creeping flow within the roughness. The net macroscopic result is a special case of non-linear diffusion described by a superfast diffusion equation (SFDE) for saturation with distinctive mathematical character. We obtain solutions to a moving boundary problem defined by SFDE that robustly convey a time power law of spreading as seen in our experiments.
Resumo:
Reaction of [Cu(pic)2]·2H2O (where pic stands for 2-picolinato) with 2-({[2-(dimethylamino)ethyl]amino}methyl)phenol (HL1) produces the square-pyramidal complex [CuL1(pic)] (1), which crystallizes as a conglomerate (namely a mixture of optically pure crystals) in the Sohncke space group P212121. The use of the methylated ligand at the benzylic position, i.e. (±)-2-(1-{[2-(dimethylamino)ethyl]amino}ethyl)phenol (HL2), yields the analogous five-coordinate complex [CuL2(pic)] (2) that crystallizes as a true racemate (namely the crystals contain both enantiomers) in the centrosymmetric space group P21/c. Density functional theory (DFT) calculations indicate that the presence of the methyl group indeed leads to a distinct crystallization behaviour, not only by intramolecular steric effects, but also because its involvement in non-covalent C–H···π and hydrophobic intermolecular contacts appears to be an important factor contributing to the crystal-lattice (stabilizing) energy of 2
Resumo:
Revealing the evolution of well-organized social behavior requires understanding a mechanism by which collective behavior is produced. A well-organized group may be produced by two possible mechanisms, namely, a central control and a distributed control. In the second case, local interactions between interchangeable components function at the bottom of the collective behavior. We focused on a simple behavior of an individual ant and analyzed the interactions between a pair of ants. In an experimental set-up, we placed the workers in a hemisphere without a nest, food, and a queen, and recorded their trajectories. The temporal pattern of velocity of each ant was obtained. From this bottom-up approach, we found the characteristic behavior of a single worker and a pair of workers as follows: (1) Activity of each individual has a rhythmic component. (2) Interactions between a pair of individuals result in two types of coupling, namely the anti-phase and the in-phase coupling. The direct physical contacts between the pair of workers might cause a phase shift of the rhythmic components in individual ants. We also build up a simple model based on the coupled oscillators toward the understanding of the whole colony behavior.
Resumo:
The gamergate (generally called the “queen”) of the Diacamma sp. walks around in the nest and comes into contact with the workers. The gamergate informs the workers of its presence by physical contact. This behavior is called a “patrol.” In previous work, it was reported that the gamergate controls its patrolling time depending on the colony size. How does the gamergate know the colony size, and how does it control the patrolling time? In this article, we propose a simple dynamics to explain this behavior. We assume that the gamergate and the workers have internal states which interact by physical contacts. By numerical simulations, we confirm that the patrol time of the proposed model depends on the size of the colony.
Resumo:
A discrete-element model of sea ice is used to study how a 90° change in wind direction alters the pattern of faults generated through mechanical failure of the ice. The sea-ice domain is 400km in size and consists of polygonal floes obtained through a Voronoi tessellation. Initially the floes are frozen together through viscous–elastic joints that can break under sufficient compressive, tensile and shear deformation. A constant wind-stress gradient is applied until the initially frozen ice pack is broken into roughly diamond-shaped aggregates, with crack angles determined by wing-crack formation. Then partial refreezing of the cracks delineating the aggregates is modelled through reduction of their length by a particular fraction, the ice pack deformation is neglected and the wind stress is rotated by 90°. New cracks form, delineating aggregates with a different orientation. Our results show the new crack orientation depends on the refrozen fraction of the initial faults: as this fraction increases, the new cracks gradually rotate to the new wind direction, reaching 90° for fully refrozen faults. Such reorientation is determined by a competition between new cracks forming at a preferential angle determined by the wing-crack theory and at old cracks oriented at a less favourable angle but having higher stresses due to shorter contacts across the joints
Resumo:
Sea ice friction models are necessary to predict the nature of interactions between sea ice floes. These interactions are of interest on a range of scales, for example, to predict loads on engineering structures in icy waters or to understand the basin-scale motion of sea ice. Many models use Amonton's friction law due to its simplicity. More advanced models allow for hydrodynamic lubrication and refreezing of asperities; however, modeling these processes leads to greatly increased complexity. In this paper we propose, by analogy with rock physics, that a rate- and state-dependent friction law allows us to incorporate memory (and thus the effects of lubrication and bonding) into ice friction models without a great increase in complexity. We support this proposal with experimental data on both the laboratory (∼0.1 m) and ice tank (∼1 m) scale. These experiments show that the effects of static contact under normal load can be incorporated into a friction model. We find the parameters for a first-order rate and state model to be A = 0.310, B = 0.382, and μ0 = 0.872. Such a model then allows us to make predictions about the nature of memory effects in moving ice-ice contacts.
Resumo:
Sea ice contains flaws including frictional contacts. We aim to describe quantitatively the mechanics of those contacts, providing local physics for geophysical models. With a focus on the internal friction of ice, we review standard micro-mechanical models of friction. The solid's deformation under normal load may be ductile or elastic. The shear failure of the contact may be by ductile flow, brittle fracture, or melting and hydrodynamic lubrication. Combinations of these give a total of six rheological models. When the material under study is ice, several of the rheological parameters in the standard models are not constant, but depend on the temperature of the bulk, on the normal stress under which samples are pressed together, or on the sliding velocity and acceleration. This has the effect of making the shear stress required for sliding dependent on sliding velocity, acceleration, and temperature. In some cases, it also perturbs the exponent in the normal-stress dependence of that shear stress away from the value that applies to most materials. We unify the models by a principle of maximum displacement for normal deformation, and of minimum stress for shear failure, reducing the controversy over the mechanism of internal friction in ice to the choice of values of four parameters in a single model. The four parameters represent, for a typical asperity contact, the sliding distance required to expel melt-water, the sliding distance required to break contact, the normal strain in the asperity, and the thickness of any ductile shear zone.