914 resultados para CENTERBAND-ONLY DETECTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current concerns regarding terrorism and international crime highlight the need for new techniques for detecting unknown and hazardous substances. A novel Raman spectroscopy-based technique, spatially offset Raman spectroscopy (SORS), was recently devised for non-invasively probing the contents of diffusely scattering and opaque containers. Here, we demonstrate a modified portable SORS sensor for detecting concealed substances in-field under different background lighting conditions. Samples including explosive precursors, drugs and an organophosphate insecticide (chemical warfare agent surrogate) were concealed inside diffusely scattering packaging including plastic, paper and cloth. Measurements were carried out under incandescent and fluorescent light as well as under daylight to assess the suitability of the probe for different real-life conditions. In each case, it was possible to identify the substances against their reference Raman spectra in less than one minute. The developed sensor has potential for rapid detection of concealed hazardous substances in airports, mail distribution centers and customs checkpoints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a commercial environment, it is advantageous to know how long it takes customers to move between different regions, how long they spend in each region, and where they are likely to go as they move from one location to another. Presently, these measures can only be determined manually, or through the use of hardware tags (i.e. RFID). Soft biometrics are characteristics that can be used to describe, but not uniquely identify an individual. They include traits such as height, weight, gender, hair, skin and clothing colour. Unlike traditional biometrics, soft biometrics can be acquired by surveillance cameras at range without any user cooperation. While these traits cannot provide robust authentication, they can be used to provide identification at long range, and aid in object tracking and detection in disjoint camera networks. In this chapter we propose using colour, height and luggage soft biometrics to determine operational statistics relating to how people move through a space. A novel average soft biometric is used to locate people who look distinct, and these people are then detected at various locations within a disjoint camera network to gradually obtain operational statistics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modelling activities in crowded scenes is very challenging as object tracking is not robust in complicated scenes and optical flow does not capture long range motion. We propose a novel approach to analyse activities in crowded scenes using a “bag of particle trajectories”. Particle trajectories are extracted from foreground regions within short video clips using particle video, which estimates long range motion in contrast to optical flow which is only concerned with inter-frame motion. Our applications include temporal video segmentation and anomaly detection, and we perform our evaluation on several real-world datasets containing complicated scenes. We show that our approaches achieve state-of-the-art performance for both tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to detect unusual events in surviellance footage as they happen is a highly desireable feature for a surveillance system. However, this problem remains challenging in crowded scenes due to occlusions and the clustering of people. In this paper, we propose using the Distributed Behavior Model (DBM), which has been widely used in computer graphics, for video event detection. Our approach does not rely on object tracking, and is robust to camera movements. We use sparse coding for classification, and test our approach on various datasets. Our proposed approach outperforms a state-of-the-art work which uses the social force model and Latent Dirichlet Allocation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bananas are one of the world's most important food crops, providing sustenance and income for millions of people in developing countries and supporting large export industries. Viruses are considered major constraints to banana production, germplasm multiplication and exchange, and to genetic improvement of banana through traditional breeding. In Africa, the two most important virus diseases are bunchy top, caused by Banana bunchy top virus (BBTV), and banana streak disease, caused by Banana streak virus (BSV). BBTV is a serious production constraint in a number of countries within/bordering East Africa, such as Burundi, Democratic Republic of Congo, Malawi, Mozambique, Rwanda and Zambia, but is not present in Kenya, Tanzania and Uganda. Additionally, epidemics of banana streak disease are occurring in Kenya and Uganda. The rapidly growing tissue culture (TC) industry within East Africa, aiming to provide planting material to banana farmers, has stimulated discussion about the need for virus indexing to certify planting material as virus-free. Diagnostic methods for BBTV and BSV have been reported and, for BBTV, PCR-based assays are reliable and relatively straightforward. However for BSV, high levels of serological and genetic variability and the presence of endogenous virus sequences within the banana genome complicate diagnosis. Uganda has been shown to contain the greatest diversity in BSV isolates found anywhere in the world. A broad-spectrum diagnostic test for BSV detection, which can discriminate between endogenous and episomal BSV sequences, is a priority. This PhD project aimed to establish diagnostic methods for banana viruses, with a particular focus on the development of novel methods for BSV detection, and to use these diagnostic methods for the detection and characterisation of banana viruses in East Africa. A novel rolling-circle amplification (RCA) method was developed for the detection of BSV. Using samples of Banana streak MY virus (BSMYV) and Banana streak OL virus (BSOLV) from Australia, this method was shown to distinguish between endogenous and episomal BSV sequences in banana plants. The RCA assay was used to screen a collection of 56 banana samples from south-west Uganda for BSV. RCA detected at least five distinct BSV isolates in these samples, including BSOLV and Banana streak GF virus (BSGFV) as well as three BSV isolates (Banana streak Uganda-I, -L and -M virus) for which only partial sequences had been previously reported. These latter three BSV had only been detected using immuno-capture (IC)-PCR and thus were possible endogenous sequences. In addition to its ability to detect BSV, the RCA protocol was also demonstrated to detect other viruses within the family Caulimoviridae, including Sugar cane bacilliform virus, and Cauliflower mosaic virus. Using the novel RCA method, three distinct BSV isolates from both Kenya and Uganda were identified and characterised. The complete genome of these isolates was sequenced and annotated. All six isolates were shown to have a characteristic badnavirus genome organisation with three open reading frames (ORFs) and the large polyprotein encoded by ORF 3 was shown to contain conserved amino acid motifs for movement, aspartic protease, reverse transcriptase and ribonuclease H activities. As well, several sequences important for expression and replication of the virus genome were identified including the conserved tRNAmet primer binding site present in the intergenic region of all badnaviruses. Based on the International Committee on Taxonomy of Viruses (ICTV) guidelines for species demarcation in the genus Badnavirus, these six isolates were proposed as distinct species, and named Banana streak UA virus (BSUAV), Banana streak UI virus (BSUIV), Banana streak UL virus (BSULV), Banana streak UM virus (BSUMV), Banana streak CA virus (BSCAV) and Banana streak IM virus (BSIMV). Using PCR with species-specific primers designed to each isolate, a genotypically diverse collection of 12 virus-free banana cultivars were tested for the presence of endogenous sequences. For five of the BSV no amplification was observed in any cultivar tested, while for BSIMV, four positive samples were identified in cultivars with a B-genome component. During field visits to Kenya, Tanzania and Uganda, 143 samples were collected and assayed for BSV. PCR using nine sets of species-specific primers, and RCA, were compared for BSV detection. For five BSV species with no known endogenous counterpart (namely BSCAV, BSUAV, BSUIV, BSULV and BSUMV), PCR was used to detect 30 infections from the 143 samples. Using RCA, 96.4% of these samples were considered positive, with one additional sample detected using RCA which was not positive using PCR. For these five BSV, PCR and RCA were both useful for identifying infected samples, irrespective of the host cultivar genotype (Musa A- or B-genome components). For four additional BSV with known endogenous counterparts in the M. balbisiana genome (BSOLV, BSGFV, BSMYV and BSIMV), PCR was shown to detect 75 infections from the 143 samples. In 30 samples from cultivars with an A-only genome component there was 96.3% agreement between PCR positive samples and detection using RCA, again demonstrating either PCR or RCA are suitable methods for detection. However, in 45 samples from cultivars with some B-genome component, the level of agreement between PCR positive samples and RCA positive samples was 70.5%. This suggests that, in cultivars with some B-genome component, many infections were detected using PCR which were the result of amplification of endogenous sequences. In these latter cases, RCA or another method which discriminates between endogenous and episomal sequences, such as immuno-capture PCR, is needed to diagnose episomal BSV infection. Field visits were made to Malawi and Rwanda to collect local isolates of BBTV for validation of a PCR-based diagnostic assay. The presence of BBTV in samples of bananas with bunchy top disease was confirmed in 28 out of 39 samples from Malawi and all nine samples collected in Rwanda, using PCR and RCA. For three isolates, one from Malawi and two from Rwanda, the complete nucleotide sequences were determined and shown to have a similar genome organisation to previously published BBTV isolates. The two isolates from Rwanda had at least 98.1% nucleotide sequence identity between each of the six DNA components, while the similarity between isolates from Rwanda and Malawi was between 96.2% and 99.4% depending on the DNA component. At the amino acid level, similarities in the putative proteins encoded by DNA-R, -S, -M, - C and -N were found to range between 98.8% to 100%. In a phylogenetic analysis, the three East African isolates clustered together within the South Pacific subgroup of BBTV isolates. Nucleotide sequence comparison to isolates of BBTV from outside Africa identified India as the possible origin of East African isolates of BBTV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Designing practical rules for controlling invasive species is a challenging task for managers, particularly when species are long-lived, have complex life cycles and high dispersal capacities. Previous findings derived from plant matrix population analyses suggest that effective control of long-lived invaders may be achieved by focusing on killing adult plants. However, the cost-effectiveness of managing different life stages has not been evaluated. We illustrate the benefits of integrating matrix population models with decision theory to undertake this evaluation, using empirical data from the largest infestation of mesquite (Leguminosae: Prosopis spp) within Australia. We include in our model the mesquite life cycle, different dispersal rates and control actions that target individuals at different life stages with varying costs, depending on the intensity of control effort. We then use stochastic dynamic programming to derive cost-effective control strategies that minimize the cost of controlling the core infestation locally below a density threshold and the future cost of control arising from infestation of adjacent areas via seed dispersal. Through sensitivity analysis, we show that four robust management rules guide the allocation of resources between mesquite life stages for this infestation: (i) When there is no seed dispersal, no action is required until density of adults exceeds the control threshold and then only control of adults is needed; (ii) when there is seed dispersal, control strategy is dependent on knowledge of the density of adults and large juveniles (LJ) and broad categories of dispersal rates only; (iii) if density of adults is higher than density of LJ, controlling adults is most cost-effective; (iv) alternatively, if density of LJ is equal or higher than density of adults, management efforts should be spread between adults, large and to a lesser extent small juveniles, but never saplings. Synthesis and applications.In this study, we show that simple rules can be found for managing invasive plants with complex life cycles and high dispersal rates when population models are combined with decision theory. In the case of our mesquite population, focussing effort on controlling adults is not always the most cost-effective way to meet our management objective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Appearance-based localization can provide loop closure detection at vast scales regardless of accumulated metric error. However, the computation time and memory requirements of current appearance-based methods scale not only with the size of the environment but also with the operation time of the platform. Additionally, repeated visits to locations will develop multiple competing representations, which will reduce recall performance over time. These properties impose severe restrictions on long-term autonomy for mobile robots, as loop closure performance will inevitably degrade with increased operation time. In this paper we present a graphical extension to CAT-SLAM, a particle filter-based algorithm for appearance-based localization and mapping, to provide constant computation and memory requirements over time and minimal degradation of recall performance during repeated visits to locations. We demonstrate loop closure detection in a large urban environment with capped computation time and memory requirements and performance exceeding previous appearance-based methods by a factor of 2. We discuss the limitations of the algorithm with respect to environment size, appearance change over time and applications in topological planning and navigation for long-term robot operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several track-before-detection approaches for image based aircraft detection have recently been examined in an important automated aircraft collision detection application. A particularly popular approach is a two stage processing paradigm which involves: a morphological spatial filter stage (which aims to emphasize the visual characteristics of targets) followed by a temporal or track filter stage (which aims to emphasize the temporal characteristics of targets). In this paper, we proposed new spot detection techniques for this two stage processing paradigm that fuse together raw and morphological images or fuse together various different morphological images (we call these approaches morphological reinforcement). On the basis of flight test data, the proposed morphological reinforcement operations are shown to offer superior signal to-noise characteristics when compared to standard spatial filter options (such as the close-minus-open and adaptive contour morphological operations). However, system operation characterised curves, which examine detection verses false alarm characteristics after both processing stages, illustrate that system performance is very data dependent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quick detection of abrupt (unknown) parameter changes in an observed hidden Markov model (HMM) is important in several applications. Motivated by the recent application of relative entropy concepts in the robust sequential change detection problem (and the related model selection problem), this paper proposes a sequential unknown change detection algorithm based on a relative entropy based HMM parameter estimator. Our proposed approach is able to overcome the lack of knowledge of post-change parameters, and is illustrated to have similar performance to the popular cumulative sum (CUSUM) algorithm (which requires knowledge of the post-change parameter values) when examined, on both simulated and real data, in a vision-based aircraft manoeuvre detection problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Appearance-based localization is increasingly used for loop closure detection in metric SLAM systems. Since it relies only upon the appearance-based similarity between images from two locations, it can perform loop closure regardless of accumulated metric error. However, the computation time and memory requirements of current appearance-based methods scale linearly not only with the size of the environment but also with the operation time of the platform. These properties impose severe restrictions on longterm autonomy for mobile robots, as loop closure performance will inevitably degrade with increased operation time. We present a set of improvements to the appearance-based SLAM algorithm CAT-SLAM to constrain computation scaling and memory usage with minimal degradation in performance over time. The appearance-based comparison stage is accelerated by exploiting properties of the particle observation update, and nodes in the continuous trajectory map are removed according to minimal information loss criteria. We demonstrate constant time and space loop closure detection in a large urban environment with recall performance exceeding FAB-MAP by a factor of 3 at 100% precision, and investigate the minimum computational and memory requirements for maintaining mapping performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For many years, computer vision has lured researchers with promises of a low-cost, passive, lightweight and information-rich sensor suitable for navigation purposes. The prime difficulty in vision-based navigation is that the navigation solution will continually drift with time unless external information is available, whether it be cues from the appearance of the scene, a map of features (whether built online or known a priori), or from an externally-referenced sensor. It is not merely position that is of interest in the navigation problem. Attitude (i.e. the angular orientation of a body with respect to a reference frame) is integral to a visionbased navigation solution and is often of interest in its own right (e.g. flight control). This thesis examines vision-based attitude estimation in an aerospace environment, and two methods are proposed for constraining drift in the attitude solution; one through a novel integration of optical flow and the detection of the sky horizon, and the other through a loosely-coupled integration of Visual Odometry and GPS position measurements. In the first method, roll angle, pitch angle and the three aircraft body rates are recovered though a novel method of tracking the horizon over time and integrating the horizonderived attitude information with optical flow. An image processing front-end is used to select several candidate lines in a image that may or may not correspond to the true horizon, and the optical flow is calculated for each candidate line. Using an Extended Kalman Filter (EKF), the previously estimated aircraft state is propagated using a motion model and a candidate horizon line is associated using a statistical test based on the optical flow measurements and location of the horizon in the image. Once associated, the selected horizon line, along with the associated optical flow, is used as a measurement to the EKF. To evaluate the accuracy of the algorithm, two flights were conducted, one using a highly dynamic Uninhabited Airborne Vehicle (UAV) in clear flight conditions and the other in a human-piloted Cessna 172 in conditions where the horizon was partially obscured by terrain, haze and smoke. The UAV flight resulted in pitch and roll error standard deviations of 0.42° and 0.71° respectively when compared with a truth attitude source. The Cessna 172 flight resulted in pitch and roll error standard deviations of 1.79° and 1.75° respectively. In the second method for estimating attitude, a novel integrated GPS/Visual Odometry (GPS/VO) navigation filter is proposed, using a structure similar to a classic looselycoupled GPS/INS error-state navigation filter. Under such an arrangement, the error dynamics of the system are derived and a Kalman Filter is developed for estimating the errors in position and attitude. Through similar analysis to the GPS/INS problem, it is shown that the proposed filter is capable of recovering the complete attitude (i.e. pitch, roll and yaw) of the platform when subjected to acceleration not parallel to velocity for both the monocular and stereo variants of the filter. Furthermore, it is shown that under general straight line motion (e.g. constant velocity), only the component of attitude in the direction of motion is unobservable. Numerical simulations are performed to demonstrate the observability properties of the GPS/VO filter in both the monocular and stereo camera configurations. Furthermore, the proposed filter is tested on imagery collected using a Cessna 172 to demonstrate the observability properties on real-world data. The proposed GPS/VO filter does not require additional restrictions or assumptions such as platform-specific dynamics, map-matching, feature-tracking, visual loop-closing, gravity vector or additional sensors such as an IMU or magnetic compass. Since no platformspecific dynamics are required, the proposed filter is not limited to the aerospace domain and has the potential to be deployed in other platforms such as ground robots or mobile phones.

Relevância:

20.00% 20.00%

Publicador: