893 resultados para CD4 T cells depletion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purification of primitive human hematopoietic stem cells has been impaired by the absence of repopulation assays. By using a stringent two-step strategy involving depletion of lineage-positive cells followed by fluorescence-activated cell sorting, we have purified a cell population that is highly enriched for cells capable of multilineage repopulation in nonobese diabetic/severe combined immunodeficient (NOD/SCID) recipients. These SCID-repopulating cells (SRCs) were exclusively found in a cell fraction that expressed high levels of CD34 and no CD38. Through limiting dilution analysis using Poisson statistics, we calculated a frequency of 1 SRC in 617 CD34+ CD38∠cells. The highly purified SRC were capable of extensive proliferation in NOD/SCID mice. Mice transplanted with 1 SRC (at limiting cell doses) were able to produce approximately 400,000 progeny 6 weeks after the transplant. Detailed flow cytometric analysis of the marrow of highly engrafted mice demonstrated both lymphoid and myeloid differentiation, as well as the retention of a significant fraction of CD34+ CD38∠cells. These highly purified fractions should be useful for identification of the cellular and molecular mechanisms that regulate primitive human hematopoietic cells. Moreover, the ability to detect and purify primitive cells provides a means to develop conditions for maintaining and/or expanding these cells during in vitro culture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Homologues of Drosophilia transient receptor potential (TRP) have been proposed to be unitary subunits of plasma membrane ion channels that are activated as a consequence of active or passive depletion of Ca2+ stores. In agreement with this hypothesis, cells expressing TRPs display novel Ca2+-permeable cation channels that can be activated by the inositol 1,4,5-trisphosphate receptor (IP3R) protein. Expression of TRPs alters cells in many ways, including up-regulation of IP3Rs not coded for by TRP genes, and proof that TRP forms channels of these and other cells is still missing. Here, we document physical interaction of TRP and IP3R by coimmunoprecipitation and glutathione S-transferase-pulldown experiments and identify two regions of IP3R, F2q and F2g, that interact with one region of TRP, C7. These interacting regions were expressed in cells with an unmodified complement of TRPs and IP3Rs to study their effect on agonist- as well as store depletion-induced Ca2+ entry and to test for a role of their respective binding partners in Ca2+ entry. C7 and an F2q-containing fragment of IP3R decreased both forms of Ca2+ entry. In contrast, F2g enhanced the two forms of Ca2+ entry. We conclude that store depletion-activated Ca2+ entry occurs through channels that have TRPs as one of their normal structural components, and that these channels are directly activated by IP3Rs. IP3Rs, therefore, have the dual role of releasing Ca2+ from stores and activating Ca2+ influx in response to either increasing IP3 or decreasing luminal Ca2+.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report herein the successful long term engraftment of highly purified hematopoietic stem cells (HSCs) without any facilitating cells in fully allogeneic recipient mice across the entire major histocompatibility complex (MHC) transplantation barrier. This finding challenges the assumption that highly purified marrow HSCs alone cannot produce long-lived allogeneic bone marrow chimeras across the MHC barrier. In the present experiments, 1 à 105 HSCs from 5-fluorouracil (5-FU)-treated donors, without any facilitating cells, have been found to repopulate lethally irradiated fully allogeneic recipients. Low density, lineage-negative (CD4âˆ, CD8âˆ, B220âˆ, Mac-1âˆ, Gr-1âˆ), CD71-negative, class I highly positive, FACS-sorted cells from 5-FU-treated C57BL/6 (B6) donor mice were transplanted into lethally irradiated BALB/c recipients. (BALB/c â BALB/c) â BALB/c T cell-depleted marrow cells used as compromised cells were also transplanted into the recipients to permit experiments to be pursued over a long period of time. Cells of donor origin in all recognized lineages of hematopoietic cells developed in these allogeneic chimeras. One thousand HSCs were sufficient to repopulate hemiallogeneic recipients, but 1 à 104 HSCs alone from 5-FU-treated donors failed to repopulate the fully allogeneic recipients. Transplantation of primary marrow stromal cells or bones of the donor strain into recipient, together with 1 à 104 HSCs, also failed to reconstitute fully allogeneic recipients. Suppression of resistance of recipients by thymectomy or injections of granulocyte colony-stimulating factor before stem cell transplantation enhanced the engraftment of allogeneic HSCs. Our experiments show that reconstitution of all lymphohematopoietic lineages across the entire MHC transplantation barriers may be achieved by transplanting allogeneic HSCs alone, without any facilitating cells, as long as a sufficient number of HSCs is transplanted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HIV entry into human cells is mediated by CD4 acting in concert with one of several members of the chemokine receptor superfamily. The resistance to HIV infection observed in individuals with defective CCR5 alleles indicated that this particular chemokine receptor plays a crucial role in the initiation of in vivo HIV infection. Expression of human CD4 transgene does not render mice susceptible to HIV infection because of structural differences between human and mouse CCR5. To ascertain whether expression of human CD4 and CCR5 is sufficient to make murine T lymphocytes susceptible to HIV infection, the lck promoter was used to direct the T cell-specific expression of human CD4 and CCR5 in transgenic mice. Peripheral blood mononuclear cells and splenocytes isolated from these mice expressed human CD4 and CCR5 and were infectible with selected M-tropic HIV isolates. After in vivo inoculation, HIV-infected cells were detected by DNA PCR in the spleen and lymph nodes of these transgenic mice, but HIV could not be cultured from these cells. This indicated that although transgenic expression of human CD4 and CCR5 permitted entry of HIV into the mouse cells, significant HIV infection was prevented by other blocks to HIV replication present in mouse cells. In addition to providing in vivo verification for the important role of CCR5 in T lymphocyte HIV infection, these transgenic mice represent a new in vivo model for understanding HIV pathogenesis by delineating species-specific cellular factors required for productive in vivo HIV infection. These mice should also prove useful for the assessment of potential therapeutic and preventative modalities, particularly vaccines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cluster of differentiation antigen 4 (CD4), the T lymphocyte antigen receptor component and human immunodeficiency virus coreceptor, is down-modulated when cells are activated by antigen or phorbol esters. During down-modulation CD4 dissociates from p56lck, undergoes endocytosis through clathrin-coated pits, and is then sorted in early endosomes to late endocytic organelles where it is degraded. Previous studies have suggested that phosphorylation and a dileucine sequence are required for down-modulation. Using transfected HeLa cells, in which CD4 endocytosis can be studied in the absence of p56lck, we show that the dileucine sequence in the cytoplasmic domain is essential for clathrin-mediated CD4 endocytosis. However, this sequence is only functional as an endocytosis signal when neighboring serine residues are phosphorylated. Phosphoserine is required for rapid endocytosis because CD4 molecules in which the cytoplasmic domain serine residues are substituted with glutamic acid residues are not internalized efficiently. Using surface plasmon resonance, we show that CD4 peptides containing the dileucine sequence bind weakly to clathrin adaptor protein complexes 2 and 1. The affinity of this interaction is increased 350- to 700-fold when the peptides also contain phosphoserine residues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calreticulin (CRT) is a high-capacity, low-affinity Ca2+-binding protein located in the lumen of the endoplasmic reticulum (ER) of all eukaryotic cells investigated so far. Its high level of conservation among different species suggests that it serves functions fundamental to cell survival. The role originally proposed for CRT, i.e., the main Ca2+ buffer of the ER, has been obscured or even casted by its implication in processes as diverse as gene expression, protein folding, and cell adhesion. In this work we seek the role of CRT in Ca2+ storing and signaling by evaluating its effects on the kinetics and amplitude of the store-operated Ca2+ current (ICRAC). We show that, in the rat basophilic leukemia cell line RBL-1, overexpression of CRT, but not of its mutant lacking the high-capacity Ca2+-binding domain, markedly retards the ICRAC development, however, only when store depletion is slower than the rate of current activation. On the contrary, when store depletion is rapid and complete, overexpression of CRT has no effect. The present results are compatible with a major Ca2+-buffering role of CRT within the ER but exclude a direct, or indirect, role of this protein on the mechanism of ICRAC activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although vertebrate cytoplasmic dynein can move to the minus ends of microtubules in vitro, its ability to translocate purified vesicles on microtubules depends on the presence of an accessory complex known as dynactin. We have cloned and characterized a novel gene, NIP100, which encodes the yeast homologue of the vertebrate dynactin complex protein p150glued. Like strains lacking the cytoplasmic dynein heavy chain Dyn1p or the centractin homologue Act5p, nip100Î strains are viable but undergo a significant number of failed mitoses in which the mitotic spindle does not properly partition into the daughter cell. Analysis of spindle dynamics by time-lapse digital microscopy indicates that the precise role of Nip100p during anaphase is to promote the translocation of the partially elongated mitotic spindle through the bud neck. Consistent with the presence of a true dynactin complex in yeast, Nip100p exists in a stable complex with Act5p as well as Jnm1p, another protein required for proper spindle partitioning during anaphase. Moreover, genetic depletion experiments indicate that the binding of Nip100p to Act5p is dependent on the presence of Jnm1p. Finally, we find that a fusion of Nip100p to the green fluorescent protein localizes to the spindle poles throughout the cell cycle. Taken together, these results suggest that the yeast dynactin complex and cytoplasmic dynein together define a physiological pathway that is responsible for spindle translocation late in anaphase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One pathway in forming synaptic-like microvesicles (SLMV) involves direct budding from the plasma membrane, requires adaptor protein 2 (AP2) and is brefeldin A (BFA) resistant. A second route leads from the plasma membrane to an endosomal intermediate from which SLMV bud in a BFA-sensitive, AP3-dependent manner. Because AP3 has been shown to bind to a di-leucine targeting signal in vitro, we have investigated whether this major class of targeting signals is capable of directing protein traffic to SLMV in vivo. We have found that a di-leucine signal within the cytoplasmic tail of human tyrosinase is responsible for the majority of the targeting of HRP-tyrosinase chimeras to SLMV in PC12 cells. Furthermore, we have discovered that a Met-Leu di-hydrophobic motif within the extreme C terminus of synaptotagmin I supports 20% of the SLMV targeting of a CD4-synaptotagmin chimera. All of the traffic to the SLMV mediated by either di-Leu or Met-Leu is BFA sensitive, strongly suggesting a role for AP3 and possibly for an endosomal intermediate in this process. The differential reduction in SLMV targeting for HRP-tyrosinase and CD4-synaptotagmin chimeras by di-alanine substitutions or BFA treatment implies that different proteins use the two routes to the SLMV to differing extents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

β2-Microglobulin-deficient (β2mâˆ) mice generate a CD4+ major histocompatibility complex class II-restricted cytotoxic T-lymphocyte (CTL) response following infection with lymphocytic choriomeningitis (LCM) virus (LCMV). We have determined the cytotoxic mechanism used by these CD4+ CTLs and have examined the role of this cytotoxic activity in pathogenesis of LCM disease in β2m∠mice. Lysis of LCMV-infected target cells by CTLs from β2m∠mice is inhibited by addition of soluble Fas-Ig fusion proteins or by pretreatment of the CTLs with the protein synthesis inhibitor emetine. In addition, LCMV-infected cell lines that are resistant to anti-Fas-induced apoptosis are refractory to lysis by these virus-specific CD4+ CTLs. These data indicate that LCMV-specific CD4+ CTLs from β2m∠mice use a Fas-dependent lytic mechanism. Intracranial (i.c.) infection of β2m∠mice with LCMV results in loss of body weight. Fas-deficient β2mâˆ.lpr mice develop a similar wasting disease following i.c. infection. This suggests that Fas-dependent cytotoxicity is not required for LCMV-induced weight loss. A potential mediator of this chronic wasting disease is tumor necrosis factor (TNF)-α, which is produced by LCMV-specific CD4+ CTLs. In contrast to LCMV-induced weight loss, lethal LCM disease in β2m∠mice is dependent on Fas-mediated cytotoxicity. Transfer of immune splenocytes from LCMV-infected β2m∠mice into irradiated infected β2m∠mice results in death of recipient animals. In contrast, transfer of these splenocytes into irradiated infected β2mâˆ.lpr mice does not cause death. Thus a role for CD4+ T-cell-mediated cytotoxicity in virus-induced immunopathology has now been demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immature CD4+CD8+ thymocytes expressing T-cell antigen receptors (TCR) are selected by TCR-mediated recognition of peptides associated with major histocompatibility complex molecules on thymic stromal cells. Selection ensures reactivity of the mature cells to foreign antigens and tolerance to self. Although much has been learned about the factors that determine whether a thymocyte with a given specificity will be positively or negatively selected, selection as an aspect of the developmental process as a whole is less well-understood. Here we invoke a model in which thymocytes tune their response characteristics individually and dynamically in the course of development. Cellular development and selection are driven by receptor-mediated metabolic perturbations. Perturbation is a measure of the net intracellular change induced by external stimulation. It results from the integration of several signals and countersignals over time and therefore depends on the environment and the maturation stage of the cell. Individual cell adaptation limits the range of perturbations. Such adaptation renders thymocytes less sensitive to the level of stimulation per se, but responsive to environmental changes in that level. This formulation begins to explain the mechanisms that link developmental and selection events to each other.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Nef protein is an important virulence factor of primate lentiviruses, yet the mechanisms by which it exerts this influence are imperfectly understood. Here, using an inducible system, we demonstrate that Nef increases IL-2 secretion from T cells stimulated via CD3 or CD28. This effect requires the conservation of the Nef myristoylation signal and SH3-binding proline-based motif. Together with several proteins involved in the initiation and propagation of T cell signaling, Nef associates with membrane microdomains known as rafts. The Nef-mediated superinduction of IL-2 reflects the activation of both NFAT and NFκB. Accordingly, Nef also enhances HIV-1 transcription in response to CD3 or CD28 stimulation. Nef-induced IL-2 hyperresponsiveness is also observed in primary CD4 lymphocytes. Overall, these data suggest that Nef acts at the level of rafts to prime T cells for activation. Likely consequences of this effect are the promotion of HIV-1 replication and the facilitation of virus spread.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We recently derived a CD4-independent virus from HIV-1/IIIB, termed IIIBx, which interacts directly with the chemokine receptor CXCR4 to infect cells. To address the underlying mechanism, a cloned Env from the IIIBx swarm (8x) was used to produce soluble gp120. 8x gp120 bound directly to cells expressing only CXCR4, whereas binding of IIIB gp120 required soluble CD4. Using an optical biosensor, we found that CD4-induced (CD4i) epitopes recognized by mAbs 17b and 48d were more exposed on 8x than on IIIB gp120. The ability of 8x gp120 to bind directly to CXCR4 and to react with mAbs 17b and 48d in the absence of CD4 indicated that this gp120 exists in a partially triggered but stable state in which the conserved coreceptor-binding site in gp120, which overlaps with the 17b epitope, is exposed. Substitution of the 8x V3 loop with that from the R5 virus strain BaL resulted in an Env (8x-V3BaL) that mediated CD4-independent CCR5-dependent virus infection and a gp120 that bound to CCR5 in the absence of CD4. Thus, in a partially triggered Env protein, the V3 loop can change the specificity of coreceptor use but does not alter CD4 independence, indicating that these properties are dissociable. Finally, IIIBx was more sensitive to neutralization by HIV-positive human sera, a variety of anti-IIIB gp120 rabbit sera, and CD4i mAbs than was IIIB. The sensitivity of this virus to neutralization and the stable exposure of a highly conserved region of gp120 suggest new strategies for the development of antibodies and small molecule inhibitors to this functionally important domain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CD4+ T cell activation, required for virus replication in these cells, occurs in local microenvironmental domains in transient bursts. Thus, although most HIV originates from short-lived virus-producing cells, it is unlikely that chronic infection is generally sustained in rapid continuous cycles of productive infection as has been proposed. Such continuity of productive infection cycles would depend on efficient long-range transmission of HIV from one set of domains to another, in turn requiring the maintenance of sufficiently high concentrations of cell-free virus across lymphoid tissues at all times. By contrast, long-lived cellular sources of HIV maintain the capacity to infect newly activated cells at close range despite the temporal and spatial discontinuities of activation events. Such proximal activation and transmission (PAT) involving chronically and latently infected cells may be responsible for sustained infection, particularly when viral loads are low. Once CD4 cells are productively infected through PAT, they can infect other activated cells in their immediate vicinity. Such events propagate locally but generally do not spread systemically, unlike in the acute phase of the infection, because of the early establishment of protective anergy. Importantly, antiretroviral drug treatment is likely to differentially impact long-range transmission and PAT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The amyloid precursor protein (APP) plays a crucial role in the pathogenesis of Alzheimerâs disease. During intracellular transport APP undergoes a series of proteolytic cleavages that lead to the release either of an amyloidogenic fragment called β-amyloid (Aβ) or of a nonamyloidogenic secreted form consisting of the ectodomain of APP (APPsec). It is Aβ that accumulates in the brain lesions that are thought to cause the disease. By reducing the cellular cholesterol level of living hippocampal neurons by 70% with lovastatin and methyl-β-cyclodextrin, we show that the formation of Aβ is completely inhibited while the generation of APPsec is unperturbed. This inhibition of Aβ formation is accompanied by increased solubility in the detergent Triton X-100 and is fully reversible by the readdition of cholesterol to previously depleted cells. Our results show that cholesterol is required for Aβ formation to occur and imply a link between cholesterol, Aβ, and Alzheimerâs disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A deranged expression of MHC class I glycoproteins, characteristic of a variety of malignancies, contributes to the ability of cancer to avoid destruction by T cell-mediated immunity. An abrogation of the metastatic capacity of B16 melanoma cells has been achieved by transfecting an MHC class I-encoding vector into class I-deficient B16 melanoma clones [Gorelik, E., Kim, M., Duty, L. & Galili, U. (1993) Clin. Exp. Metastasis 11, 439â452]. We report here that the deranged expression of class I molecules by B16 melanoma cells is more than a mere acquisition of the capacity to escape immune recognition. Namely, cells of the B16 melanoma prompted splenic lymphocytes to commit death after coculture. However, a class I-expressing and nonmetastatic CL8-2 clone was found to be less potent as an inducer of apoptosis than class I-deficient and metastatic BL9 and BL12 clones. Both Thy1.2+ and Thy1.2∠splenocytes underwent cell death when exposed to the class I-deficient BL9 clone. A proportion of CD4+ and CD8+ cells among splenocytes exposed to the BL9 clone was lower than that observed in a coculture with cells of the CL8-2 clone. Consistently, none of the melanoma clones studied produced a ligand to the FAS receptor (FAS-L). Thus, our results provide evidence that (i) the production of FAS-L may not be the sole mechanism by which malignant cells induce apoptosis in immunocytes, and (ii) absence of MHC class I glycoproteins plays an important role in preventing the elimination of potential effector immunocytes by tumor cells.