983 resultados para CATALYST SUPPORT
Resumo:
Purpose – This paper aims to explore the potential contributions of social media in supporting tacit knowledge sharing, according to the physicians’ perspectives and experiences. Design/methodology/approach – Adopting a qualitative survey design, 24 physicians were interviewed. Purposive and snowball sampling were used to select the participants. Thematic analysis approach was used for data analysis. Findings – The study revealed five major themes and over 20 sub-themes as potential contributions of social media to tacit knowledge flow among physicians. The themes included socialising, practising, networking, storytelling and encountering. In addition, with the help of the literature and the supporting data, the study proposed a conceptual model that explains the potential contribution of social media to tacit knowledge sharing. Research limitations/implications – The study had both theoretical (the difficulty of distinguishing tacit and explicit knowledge in practice) and practical limitations (small sample size). The study findings have implications for the healthcare industry whose clinical teams are not always physically co-located but must exchange their critical experiential and tacit knowledge. Originality/value – The study has opened up a new discussion of this area by demonstrating and conceptualising how social media tools may facilitate tacit knowledge sharing.
Resumo:
Support Vector Machines(SVMs) are hyperplane classifiers defined in a kernel induced feature space. The data size dependent training time complexity of SVMs usually prohibits its use in applications involving more than a few thousands of data points. In this paper we propose a novel kernel based incremental data clustering approach and its use for scaling Non-linear Support Vector Machines to handle large data sets. The clustering method introduced can find cluster abstractions of the training data in a kernel induced feature space. These cluster abstractions are then used for selective sampling based training of Support Vector Machines to reduce the training time without compromising the generalization performance. Experiments done with real world datasets show that this approach gives good generalization performance at reasonable computational expense.
Resumo:
With the increasing adoption of wireless technology, it is reasonable to expect an increase in file demand for supporting both real-time multimedia and high rate reliable data services. Next generation wireless systems employ Orthogonal Frequency Division Multiplexing (OFDM) physical layer owing, to the high data rate transmissions that are possible without increase in bandwidth. Towards improving file performance of these systems, we look at the design of resource allocation algorithms at medium-access layer, and their impact on higher layers. While TCP-based clastic traffic needs reliable transport, UDP-based real-time applications have stringent delay and rate requirements. The MAC algorithms while catering to the heterogeneous service needs of these higher layers, tradeoff between maximizing the system capacity and providing fairness among users. The novelly of this work is the proposal of various channel-aware resource allocation algorithms at the MAC layer. which call result in significant performance gains in an OFDM based wireless system.
Resumo:
The determination of the overconsolidation ratio (OCR) of clay deposits is an important task in geotechnical engineering practice. This paper examines the potential of a support vector machine (SVM) for predicting the OCR of clays from piezocone penetration test data. SVM is a statistical learning theory based on a structural risk minimization principle that minimizes both error and weight terms. The five input variables used for the SVM model for prediction of OCR are the corrected cone resistance (qt), vertical total stress (sigmav), hydrostatic pore pressure (u0), pore pressure at the cone tip (u1), and the pore pressure just above the cone base (u2). Sensitivity analysis has been performed to investigate the relative importance of each of the input parameters. From the sensitivity analysis, it is clear that qt=primary in situ data influenced by OCR followed by sigmav, u0, u2, and u1. Comparison between SVM and some of the traditional interpretation methods is also presented. The results of this study have shown that the SVM approach has the potential to be a practical tool for determination of OCR.
Resumo:
Many developing countries are experiencing rapid expansion in mining with associated water impacts. In most cases mining expansion is outpacing the building of national capacity to ensure that sustainable water management practices are implemented. Since 2011, Australia's International Mining for Development Centre (IM4DC) has funded capacity building in such countries including a program of water projects. Five projects in particular (principally covering experiences from Peru, Colombia, Ghana, Zambia, Indonesia, Philippines and Mongolia) have provided insight into water capacity building priorities and opportunities. This paper reviews the challenges faced by water stakeholders, and proposes the associated capacity needs. The paper uses the evidence derived from the IM4DC projects to develop a set of specific capacity-building recommendations. Recommendations include: the incorporation of mine water management in engineering and environmental undergraduate courses; secondments of staff to suitable partner organisations; training to allow site staff to effectively monitor water including community impacts; leadership training to support a water stewardship culture; training of officials to support implementation of catchment management approaches; and the empowerment of communities to recognise and negotiate solutions to mine-related risks. New initiatives to fund the transfer of multi-disciplinary knowledge from nations with well-developed water management practices are called for.
Resumo:
Background The leading causes of morbidity and mortality for people in high-income countries living with HIV are now non-AIDS malignancies, cardiovascular disease and other non-communicable diseases associated with ageing. This protocol describes the trial of HealthMap, a model of care for people with HIV (PWHIV) that includes use of an interactive shared health record and self-management support. The aims of the HealthMap trial are to evaluate engagement of PWHIV and healthcare providers with the model, and its effectiveness for reducing coronary heart disease risk, enhancing self-management, and improving mental health and quality of life of PWHIV. Methods/Design The study is a two-arm cluster randomised trial involving HIV clinical sites in several states in Australia. Doctors will be randomised to the HealthMap model (immediate arm) or to proceed with usual care (deferred arm). People with HIV whose doctors are randomised to the immediate arm receive 1) new opportunities to discuss their health status and goals with their HIV doctor using a HealthMap shared health record; 2) access to their own health record from home; 3) access to health coaching delivered by telephone and online; and 4) access to a peer moderated online group chat programme. Data will be collected from participating PWHIV (n = 710) at baseline, 6 months, and 12 months and from participating doctors (n = 60) at baseline and 12 months. The control arm will be offered the HealthMap intervention at the end of the trial. The primary study outcomes, measured at 12 months, are 1) 10-year risk of non-fatal acute myocardial infarction or coronary heart disease death as estimated by a Framingham Heart Study risk equation; and 2) Positive and Active Engagement in Life Scale from the Health Education Impact Questionnaire (heiQ). Discussion The study will determine the viability and utility of a novel technology-supported model of care for maintaining the health and wellbeing of people with HIV. If shown to be effective, the HealthMap model may provide a generalisable, scalable and sustainable system for supporting the care needs of people with HIV, addressing issues of equity of access. Trial registration Universal Trial Number (UTN) U111111506489; ClinicalTrial.gov Id NCT02178930 submitted 29 June 2014
Resumo:
The determination of settlement of shallow foundations on cohesionless soil is an important task in geotechnical engineering. Available methods for the determination of settlement are not reliable. In this study, the support vector machine (SVM), a novel type of learning algorithm based on statistical theory, has been used to predict the settlement of shallow foundations on cohesionless soil. SVM uses a regression technique by introducing an ε – insensitive loss function. A thorough sensitive analysis has been made to ascertain which parameters are having maximum influence on settlement. The study shows that SVM has the potential to be a useful and practical tool for prediction of settlement of shallow foundation on cohesionless soil.
Resumo:
Extensible Markup Language ( XML) has emerged as a medium for interoperability over the Internet. As the number of documents published in the form of XML is increasing, there is a need for selective dissemination of XML documents based on user interests. In the proposed technique, a combination of Adaptive Genetic Algorithms and multi class Support Vector Machine ( SVM) is used to learn a user model. Based on the feedback from the users, the system automatically adapts to the user's preference and interests. The user model and a similarity metric are used for selective dissemination of a continuous stream of XML documents. Experimental evaluations performed over a wide range of XML documents, indicate that the proposed approach significantly improves the performance of the selective dissemination task, with respect to accuracy and efficiency.
Resumo:
Public referenda have gained momentum as a democratic tool to legitimize public mega projects such as hosting the Olympic Games. Interest groups in favour of hosting the Olympics therefore try to influence voters through public campaigns that primarily focus on economic benefits. However, recent studies find no or hardly any economic impact of hosting the Olympics, instead providing evidence for a positive social impact. This raises the question whether citizens consider economic or social factors when deciding on hosting the Olympics. Based on representative survey data from 12 countries, our results suggest that economic factors can influence voting behaviour, although the influence of social factors is stronger.
Resumo:
This paper addresses the challenges of flood mapping using multispectral images. Quantitative flood mapping is critical for flood damage assessment and management. Remote sensing images obtained from various satellite or airborne sensors provide valuable data for this application, from which the information on the extent of flood can be extracted. However the great challenge involved in the data interpretation is to achieve more reliable flood extent mapping including both the fully inundated areas and the 'wet' areas where trees and houses are partly covered by water. This is a typical combined pure pixel and mixed pixel problem. In this paper, an extended Support Vector Machines method for spectral unmixing developed recently has been applied to generate an integrated map showing both pure pixels (fully inundated areas) and mixed pixels (trees and houses partly covered by water). The outputs were compared with the conventional mean based linear spectral mixture model, and better performance was demonstrated with a subset of Landsat ETM+ data recorded at the Daly River Basin, NT, Australia, on 3rd March, 2008, after a flood event.
Resumo:
This paper describes the types of support that teachers are accessing through the Social Network Site (SNS) 'Facebook'. It describes six ways in which teachers support one another within online groups. It presents evidence from a study of a large, open group of teachers online over a twelve week period, repeated with multiple groups a year later over a one week period. The findings suggest that large open groups in SNSs can be a useful source of pragmatic advice for teachers but that these groups are rarely a place for reflection on or feedback about teaching practice.
Resumo:
Non-resident workforces experience high labour turnover, which has an impact on organisational operations and affects worker satisfaction and, in turn, partners’ ability to cope with work-related absences. Research suggests that partner satisfaction may be increased by providing a range of support services, which include professional, practical, and social support. A search was conducted to identify support available for resources and health-industry non-resident workers. These were compared to the supports available to families of deployed defence personnel. They were used to compare and contrast the spread available for each industry. The resources industry primarily provided social support, and lacked an inclusion of professional and practical supports. Health-professional support services were largely directed towards extended locum support, rather than to Fly-In Fly-Out workers. Improving sources of support which parallel support provided to the Australian Defence Force is suggested as a way to increase partner satisfaction. The implications are to understand the level of uptake, perceived importance, and utilisation of such support services.
Resumo:
Extensible Markup Language ( XML) has emerged as a medium for interoperability over the Internet. As the number of documents published in the form of XML is increasing, there is a need for selective dissemination of XML documents based on user interests. In the proposed technique, a combination of Adaptive Genetic Algorithms and multi class Support Vector Machine ( SVM) is used to learn a user model. Based on the feedback from the users, the system automatically adapts to the user's preference and interests. The user model and a similarity metric are used for selective dissemination of a continuous stream of XML documents. Experimental evaluations performed over a wide range of XML documents, indicate that the proposed approach significantly improves the performance of the selective dissemination task, with respect to accuracy and efficiency.
Resumo:
The most difficult operation in the flood inundation mapping using optical flood images is to separate fully inundated areas from the ‘wet’ areas where trees and houses are partly covered by water. This can be referred as a typical problem the presence of mixed pixels in the images. A number of automatic information extraction image classification algorithms have been developed over the years for flood mapping using optical remote sensing images. Most classification algorithms generally, help in selecting a pixel in a particular class label with the greatest likelihood. However, these hard classification methods often fail to generate a reliable flood inundation mapping because the presence of mixed pixels in the images. To solve the mixed pixel problem advanced image processing techniques are adopted and Linear Spectral unmixing method is one of the most popular soft classification technique used for mixed pixel analysis. The good performance of linear spectral unmixing depends on two important issues, those are, the method of selecting endmembers and the method to model the endmembers for unmixing. This paper presents an improvement in the adaptive selection of endmember subset for each pixel in spectral unmixing method for reliable flood mapping. Using a fixed set of endmembers for spectral unmixing all pixels in an entire image might cause over estimation of the endmember spectra residing in a mixed pixel and hence cause reducing the performance level of spectral unmixing. Compared to this, application of estimated adaptive subset of endmembers for each pixel can decrease the residual error in unmixing results and provide a reliable output. In this current paper, it has also been proved that this proposed method can improve the accuracy of conventional linear unmixing methods and also easy to apply. Three different linear spectral unmixing methods were applied to test the improvement in unmixing results. Experiments were conducted in three different sets of Landsat-5 TM images of three different flood events in Australia to examine the method on different flooding conditions and achieved satisfactory outcomes in flood mapping.