930 resultados para CARDIOLOGÍA - INVESTIGACIONES
Resumo:
La enseñanza-aprendizaje de los conceptos elementales del Análisis matemático en el nivel del Bachillerato, constituye uno de los puntos de investigación en Didáctica de las Matemáticas más relevantes en la actualidad. Desde marcos teóricos diferentes como la ingeniería didáctica, teoría de obstáculos, la teoría antropológica o el APOS, se han realizado investigaciones sobre la enseñanza-aprendizaje del límite de una función en los niveles de enseñanza de Bachillerato y Universitaria. En este trabajo se presenta una propuesta de investigación, en la que se aplica la teoría de las cuestiones semióticas (TFS), mediante la cual se busca describir, explicar e identificar factores condicionantes de la enseñanza-aprendizaje del límite de una función en un contexto institucional fijado.
Resumo:
Este trabajo se centra en la enseñanza y aprendizaje de la distribución normal en un curso introductorio de estadística en la Universidad, y se fundamenta en un marco teórico que plantea el significado institucional y personal de los objetos matemáticos. En particular, se describe el diseño de una experiencia de enseñanza de la distribución normal apoyada en el uso del ordenador y se analizan los avances, dificultades y errores que presentan los alumnos durante el desarrollo de dicha experiencia. En el estudio se presta especial atención a todo lo que implica en la enseñanza de estadística la introducción del computador. Pretendemos aportar información válida sobre la enseñanza/aprendizaje de la estadística en cursos universitarios, que pueda ser completada y ampliada en futuras investigaciones.
Investigación en Didáctica de las Matemáticas en el bachillerato y primeros cursos de la universidad
Resumo:
En este trabajo presentamos una revisión de las investigaciones que se han venido realizando en los últimos 20 años, tanto a nivel internacional como en nuestro país, en el campo de la Didáctica de la Matemática en la enseñanza post-obligatoria. En primer lugar, analizamos los estudios internacionales realizados en el seno del International Group for the Psychology of Mathematics Education (PME) y especialmente en el National Council of Teachers of Mathematics (NCTM), al objeto de mostrar un panorama general de la investigación en este ámbito. Posteriormente abordaremos los trabajos presentados en los Simposios de la Sociedad Española de Investigación en Educación Matemática (SEIM) y, en particular los del Grupo de Investigación Didáctica del Análisis Matemático, tomando como elemento organizador el contenido matemático. Finalmente estableceremos algunas conclusiones generales del estudio elaborado.
Resumo:
Se presentan dos investigaciones que se están desarrollando y que surgen del interés por hacer más accesible el álgebra escolar a los estudiantes. Se describen los objetivos de investigación, el método, el análisis de datos, los resultados más relevantes y las conclusiones de cada una de las investigaciones. Se destacan las implicaciones que pueden tener para la docencia en los niveles educativos en los que se lleva a cabo (educación secundaria y educación primaria, respectivamente).
Resumo:
Este documento se elabora a partir de una revisión inicial de literatura donde se analizaron los Lineamientos Curriculares, los Estándares Básicos de Competencia y algunos estudios e investigaciones en el campo de la variación y la trigonometría. Desde los elementos teóricos observados en la literatura se hizo indispensable un análisis de algunos libros de texto frente al tipo de ejercicios que se proponía para abordar la trigonometría plana; de este análisis surgió la necesidad de diseñar propuestas alternativas en las cuales se haga hincapié en la visualización de relaciones funcionales entre los ángulos y los lados de un triángulo; de este modo, se espera aportar elementos para superar la idea de que las relaciones trigonométricas son “fórmulas” para calcular datos fijos y desconocidos de un triángulo.
Resumo:
En los últimos años la probabilidad ha pasado a formar parte del currículo de los programas de matemáticas en la educación básica de una gran cantidad de países del mundo. Esta realidad plantea un reto didáctico que conlleva no sólo la elaboración de los programas para cada nivel educativo, sino su implementación didáctica en el salón de clase. Por la experiencia alcanzada en los cursos universitarios y por las investigaciones didácticas realizadas recientemente, se acepta que la probabilidad es un tema particularmente difícil.
Resumo:
Diversas investigaciones han mostrado la dificultad que existe en el proceso de enseñanza aprendizaje del concepto de límite; más aún cuando este presenta diversos obstáculos (geométrico, horror al infinito, relativo a funciones y ligado al símbolo)que deben ser superados en su totalidad para aprender dicho concepto. De esta manera, el presente trabajo pretende mostrar cómo desde un contexto geométrico se hace uso de los fractales, específicamente del fractal “árbol pitagórico”, el cual se propone durante tres sesiones de clase en estudiantes de grado undécimo para ir construyendo la noción de límite. En este sentido, se busca promover un aprendizaje más dinámico y autónomo, donde el estudiante tenga un contacto directo con la construcción de dicho concepto.
Resumo:
Esta comunicación presenta algunos avances del trabajo de grado “La modelación matemática como proceso de estudio en el álgebra escolar”. A través de una revisión de documentos y resultados de investigaciones en el campo de la Didáctica de las Matemáticas, se pretende el diseño de una propuesta de intervención en aula que movilice procesos de modelación algebraica como una vía para generar habilidades en los estudiantes en la resolución de problemas, que permiten la reconstrucción de organizaciones matemáticas cada vez de mayor completitud; lo anterior ubica el trabajo en el campo de la Teoría Antropológica de lo Didáctico y en un tema de actualidad: el desarrollo de competencias matemáticas en la escuela.
Resumo:
Uno de los puntos débiles del actual currículo de secundaria en Matemáticas es la enseñanza de la dispersión. Son varios los motivos que ocasionan esta debilidad. En este trabajo se analizarán brevemente algunas investigaciones que nos ayudarán en el aula y en la investigación a mejorar la comprensión de un concepto complejo como es la dispersión. Se indica la importancia de la dispersión en Estadística. Se comprueba que el concepto de dispersión no se incluye en los curriculos oficiales, se analiza el significado de la noción de dispersión y se ejemplifica el desarrollo histórico mediante el devenir a lo largo de la historia de las leyes del error. Finalizamos con unas conclusiones válidas para la enseñanza y la investigación.
Resumo:
En años recientes, un cuerpo creciente de investigaciones en didáctica de las matemáticas han identificado algunas dificultades en relación con el aprendizaje de contenidos temáticos, procesos y contextos relacionados con el pensamiento espacial y sistemas geométricos, siendo comúnmente atribuidas a causas de orden epistemológico, cognitivo, curricular y didáctico. En este sentido se revela como prometedor el estudio del proceso de integración al currículo y a las prácticas escolares, de recursos, concretamente lo que se refiere a materiales manipulativos. Esto con la intención de fortalecer en los estudiantes los conocimientos adquiridos para resolver algunos problemas de su entorno escolar y cotidiano, a medida que avanza su proceso de aprendizaje.
Resumo:
En este documento, se presentarán las etapas para diseñar un Modelo Instruccional en ambientes virtuales interactivos para la enseñanza de los números Reales, que tiene en cuenta: la formación matemática de los estudiantes, sus “niveles”, sus ritmos de aprendizaje, sus obstáculos en el aprendizaje y el tiempo oficial propuesto por la institución educativa para abordar los temas. Además, se explicitan, organizan y relacionan muchos de los elementos que se conjugan, y se camuflan, en la enseñanza y el aprendizaje de los temas matemáticos. Este diseño plantea ciertos elementos para el análisis del Discurso Matemático, del discurso didáctico y toma ciertos resultados de las investigaciones en Educación Matemática (Taxonomía SOLO y la Teoría de Súperítemes entre otras) para poner en relación los niveles en el discurso didáctico con los niveles de abstracción de los estudiantes.
Resumo:
Ernest (1989) afirmó que las creencias y concepciones de un profesor regulan su práctica de enseñanza en el aula. De esta manera, si se desean cambios en las prácticas de los profesores de matemáticas, al parecer, deben cambiar sus creencias y concepciones. Al respecto se generó la pregunta: ¿es posible cambiar las creencias y concepciones de los profesores? (Thompson, 1991). Las investigaciones de Senger (1999), D’Amore y Fandiño (2004) y Pehkonen (2006), entre otras, han arrojado resultados positivos acerca de que las creencias y concepciones de los profesores pueden cambiar. En este artículo se presentarán los resultados de una investigación cuyo objetivo primordial fue identificar y caracterizar cambios en las concepciones de los estudiantes para profesor de sexto semestre de Licenciatura en Educación Básica con Énfasis en Matemáticas (Bogotá, Colombia). En esencia se presentarán resultados que muestran las concepciones iniciales de los estudiantes y su cambio al finalizar la intervención.
Resumo:
Presentamos una reflexión basada en la diversidad escolar como una problemática de los sistemas educativos actuales. A modo de particularizar y evidenciar nuestra postura, elaboramos una discusión alrededor de tres perspectivas del problema. Resaltamos el rol de la matemática en cada una de ellas y la necesidad de realizar investigaciones al interior de cada una de las poblaciones descritas. Nos interesa reflexionar sobre el rol del discurso matemático escolar en contraste con la diversidad escolar, bajo la hipótesis de que el primero no considera las características de los estudiantes, contexto, cultura, factores que la propician. Referiremos a dicha diversidad escolar, tras el análisis de tres comunidades desatendidas por el sistema educativo: los(as) niños(as) con talento cuyas mismas capacidades superiores los aíslan de una educación diferenciada y por el otro, los(as) niños(as) Sordos(as) y niños(as) indígenas, cuya condición física o socioeconómica los determina con rezago educativo.
Resumo:
Este artículo presenta los resultados de una investigación realizada en alumnos de primer año medio del Liceo Eleuterio Ramírez de Osorno. El objetivo de dicha investigación era conocer el desarrollo del pensamiento geométrico en el tema de transformaciones isométricas según la Teoría de Van Hiele. La metodología de investigación es cualitativa, específicamente mediante estudio de casos. La recolección de datos se realizó mediante un seguimiento en el desarrollo de las actividades planteadas, observación de participantes y entrevistas. Como resultado se obtuvo que los alumnos mayoritariamente exhiben características del nivel 1 de reconocimiento para la isometría de simetría.
Resumo:
El cálculo diferencial e integral, es materia obligada en gran parte del currículo escolar y piedra angular en el desarrollo de la matemática. A pesar de ello en escuelas tanto a nivel medio como superior, los reportes de problemas en su enseñanza aprendizaje son frecuentes. Esta materia presenta un alto índice de reprobación, inclusive con alumnos que recursan. Este estudio muestra una fuerte tendencia, en la educación, a visualizar el cálculo como un patrón de fórmulas y procedimientos algebraicos, dejando fuera los aspectos conceptuales. En el mismo sentido Dreyfus (1990, 124), reporta que las investigaciones en Francia exhiben la tendencia de los estudiantes a los aspectos de procedimiento algorítmicos, dejando fuera los conceptuales.