989 resultados para C-2 oxygenates
Resumo:
Heidelberg, Univ., Diss. 1907
Resumo:
Hermann Weinheimer
Resumo:
XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of 2 10-47 c 2 for WIMP masses around 50 GeV2, which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of ~ 10 m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons (>99.5%) and showers of secondary particles from muon interactions in the rock (>70%). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.
Resumo:
We present the first results of searches for axions and axionlike particles with the XENON100 experiment. The axion-electron coupling constant, g Ae , has been probed by exploiting the axioelectric effect in liquid xenon. A profile likelihood analysis of 224.6 live days × 34-kg exposure has shown no evidence for a signal. By rejecting g Ae larger than 7.7×10 −12 (90% C.L.) in the solar axion search, we set the best limit to date on this coupling. In the frame of the DFSZ and KSVZ models, we exclude QCD axions heavier than 0.3 and 80 eV/c 2 , respectively. For axionlike particles, under the assumption that they constitute the whole abundance of dark matter in our galaxy, we constrain g Ae to be lower than 1×10 −12 (90% C.L.) for masses between 5 and 10 keV/c 2 .
Resumo:
We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2–30 keV, where the sensitivity to solar pp and 7Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ~2X 10-48 cm2 and WIMP masses around 50 GeV c 2, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ~6 GeV c-2 to cross sections above ~4X10-45cm2. DARWIN could reach a competitive half-life sensitivity of 5.6X1026 y to the neutrinoless double beta decay of 136Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.
Resumo:
hrsg. vom Calwer Verlagsverein
Resumo:
BACKGROUND Life style changes and statins are the cornerstones in management of dyslipidemia in HIV-infected patients. Replacement of an antiretroviral therapy (ART) component is a proposed therapeutic strategy to reduce cardiovascular risk. In dyslipidemic HIV-positive patients, we assessed the efficacy of replacing boosted protease inhibitor (bPI) or efavirenz (EFV) by etravirine (ETR) as an alternative to statin therapy. MATERIALS AND METHODS A prospective, open-label, multicentre, 12-week study of HIV-infected patients on ART including bPI or EFV, and statin treatment. Four weeks after statin interruption, bPI or EFV were switched to ETR (400 mg, 8 weeks) if serum low-density lipoprotein cholesterol (LDL-c) was ≥ 3 mmol/L. The primary endpoint was the proportion of patients on ETR with no indication for statin treatment at study completion. Serum levels of HIV-RNA, lipids, and biomarkers of cardiovascular disease were also measured. (ClinicalTrialsgov: NCT01543035). RESULTS The 31 included patients had a HIV1-RNA <50 copies/mL (median age, 52 years; median CD4, 709 cell/mL; median LDL-c, 2.89 mmol/L), 68% were on EFV, 32% on bPI. At week 4, 27 patients switched to ETR. At study completion, 15 patients (56%) on ETR did not qualify for statin treatment. After the ETR switch, serum levels of the cardiovascular biomarkers sICAM and MCP1/CCL2 decreased by 11.2% and 18.9%, respectively, and those of CCL5/RANTES and tissue inhibitor of metalloproteinase-1 increased by 14.3% and 13.4%, respectively, indicating reduced cardiovascular risk. There were no notable treatment-related adverse events. CONCLUSIONS Replacing bPI or EFV by ETR is a viable strategy to obviate primary prevention statin treatment. This article is protected by copyright. All rights reserved.
Resumo:
hrsg. von Leopold Stein, bearb. von Richard Grünfeld
Resumo:
von I. N. Mannheimer
Resumo:
Information on the relationship between cumulative fossil CO2 emissions and multiple climate targets is essential to design emission mitigation and climate adaptation strategies. In this study, the transient response of a climate or environmental variable per trillion tonnes of CO2 emissions, termed TRE, is quantified for a set of impact-relevant climate variables and from a large set of multi-forcing scenarios extended to year 2300 towards stabilization. An ∼ 1000-member ensemble of the Bern3D-LPJ carbon–climate model is applied and model outcomes are constrained by 26 physical and biogeochemical observational data sets in a Bayesian, Monte Carlo-type framework. Uncertainties in TRE estimates include both scenario uncertainty and model response uncertainty. Cumulative fossil emissions of 1000 Gt C result in a global mean surface air temperature change of 1.9 °C (68 % confidence interval (c.i.): 1.3 to 2.7 °C), a decrease in surface ocean pH of 0.19 (0.18 to 0.22), and a steric sea level rise of 20 cm (13 to 27 cm until 2300). Linearity between cumulative emissions and transient response is high for pH and reasonably high for surface air and sea surface temperatures, but less pronounced for changes in Atlantic meridional overturning, Southern Ocean and tropical surface water saturation with respect to biogenic structures of calcium carbonate, and carbon stocks in soils. The constrained model ensemble is also applied to determine the response to a pulse-like emission and in idealized CO2-only simulations. The transient climate response is constrained, primarily by long-term ocean heat observations, to 1.7 °C (68 % c.i.: 1.3 to 2.2 °C) and the equilibrium climate sensitivity to 2.9 °C (2.0 to 4.2 °C). This is consistent with results by CMIP5 models but inconsistent with recent studies that relied on short-term air temperature data affected by natural climate variability.
Resumo:
von Rudolph Plaut
Resumo:
R. Kittel