996 resultados para Bohlin, Torsten
Resumo:
Der Fürsorge- wie der Machtbegriff werden im Kontext ethischer Debatten in Philosophie, Ethik und Politik erläutert und aufeinander bezogen, um die Frage nach der Bedeutung von Macht im Kontext des Gesundheitswesens, von Medizin und Pflege zu präzisieren.
Resumo:
TbRRM1 of Trypanosoma brucei is a nucleoprotein that was previously identified in a search for splicing factors in T. brucei. We show that TbRRM1 associates with mRNAs and with the auxiliary splicing factor polypyrimidine tract-binding protein 2, but not with components of the core spliceosome. TbRRM1 also interacts with several retrotransposon hot spot (RHS) proteins and histones. RNA immunoprecipitation of a tagged form of TbRRM1 from procyclic (insect) form trypanosomes identified ca. 1,500 transcripts that were enriched and 3,000 transcripts that were underrepresented compared to cellular mRNA. Enriched transcripts encoded RNA-binding proteins, including TbRRM1 itself, several RHS transcripts, mRNAs with long coding regions, and a high proportion of stage-regulated mRNAs that are more highly expressed in bloodstream forms. Transcripts encoding ribosomal proteins, other factors involved in translation, and procyclic-specific transcripts were underrepresented. Knockdown of TbRRM1 by RNA interference caused widespread changes in mRNA abundance, but these changes did not correlate with the binding of the protein to transcripts, and most splice sites were unchanged, negating a general role for TbRRM1 in splice site selection. When changes in mRNA abundance were mapped across the genome, regions with many downregulated mRNAs were identified. Two regions were analyzed by chromatin immunoprecipitation, both of which exhibited increases in nucleosome occupancy upon TbRRM1 depletion. In addition, subjecting cells to heat shock resulted in translocation of TbRRM1 to the cytoplasm and compaction of chromatin, consistent with a second role for TbRRM1 in modulating chromatin structure. IMPORTANCE: Trypanosoma brucei, the parasite that causes human sleeping sickness, is transmitted by tsetse flies. The parasite progresses through different life cycle stages in its two hosts, altering its pattern of gene expression in the process. In trypanosomes, protein-coding genes are organized as polycistronic units that are processed into monocistronic mRNAs. Since genes in the same unit can be regulated independently of each other, it is believed that gene regulation is essentially posttranscriptional. In this study, we investigated the role of a nuclear RNA-binding protein, TbRRM1, in the insect stage of the parasite. We found that TbRRM1 binds nuclear mRNAs and also affects chromatin status. Reduction of nuclear TbRRM1 by RNA interference or heat shock resulted in chromatin compaction. We propose that TbRRM1 regulates RNA polymerase II-driven gene expression both cotranscriptionally, by facilitating transcription and efficient splicing, and posttranscriptionally, via its interaction with nuclear mRNAs.
Resumo:
Indoor localization systems become more interesting for researchers because of the attractiveness of business cases in various application fields. A WiFi-based passive localization system can provide user location information to third-party providers of positioning services. However, indoor localization techniques are prone to multipath and Non-Line Of Sight (NLOS) propagation, which lead to significant performance degradation. To overcome these problems, we provide a passive localization system for WiFi targets with several improved algorithms for localization. Through Software Defined Radio (SDR) techniques, we extract Channel Impulse Response (CIR) information at the physical layer. CIR is later adopted to mitigate the multipath fading problem. We propose to use a Nonlinear Regression (NLR) method to relate the filtered power information to propagation distances, which significantly improves the ranging accuracy compared to the commonly used log-distance path loss model. To mitigate the influence of ranging errors, a new trilateration algorithm is designed as well by combining Weighted Centroid and Constrained Weighted Least Square (WC-CWLS) algorithms. Experiment results show that our algorithm is robust against ranging errors and outperforms the linear least square algorithm and weighted centroid algorithm.
Resumo:
Attractive business cases in various application fields contribute to the sustained long-term interest in indoor localization and tracking by the research community. Location tracking is generally treated as a dynamic state estimation problem, consisting of two steps: (i) location estimation through measurement, and (ii) location prediction. For the estimation step, one of the most efficient and low-cost solutions is Received Signal Strength (RSS)-based ranging. However, various challenges - unrealistic propagation model, non-line of sight (NLOS), and multipath propagation - are yet to be addressed. Particle filters are a popular choice for dealing with the inherent non-linearities in both location measurements and motion dynamics. While such filters have been successfully applied to accurate, time-based ranging measurements, dealing with the more error-prone RSS based ranging is still challenging. In this work, we address the above issues with a novel, weighted likelihood, bootstrap particle filter for tracking via RSS-based ranging. Our filter weights the individual likelihoods from different anchor nodes exponentially, according to the ranging estimation. We also employ an improved propagation model for more accurate RSS-based ranging, which we suggested in recent work. We implemented and tested our algorithm in a passive localization system with IEEE 802.15.4 signals, showing that our proposed solution largely outperforms a traditional bootstrap particle filter.
Resumo:
BACKGROUND Biomarkers are a promising tool for the management of patients with atherosclerosis, but their variation is largely unknown. We assessed within-subject and between-subject biological variation of biomarkers in peripheral artery disease (PAD) patients and healthy controls, and defined which biomarkers have a favorable variation profile for future studies. METHODS Prospective, parallel-group cohort study, including 62 patients with stable PAD (79% men, 65±7years) and 18 healthy control subjects (44% men, 57±7years). Blood samples were taken at baseline, and after 3-, 6-, and 12-months. We calculated within-subject (CVI) and between-subject (CVG) coefficients of variation and intra-class correlation coefficient (ICC). RESULTS Mean levels of D-dimer, hs-CRP, IL-6, IL-8, MMP-9, MMP-3, S100A8/A9, PAI-1, sICAM-1, and sP-selectin levels were higher in PAD patients than in healthy controls (P≤.05 for all). CVI and CVG of the different biomarkers varied considerably in both groups. An ICC≥0.5 (indicating moderate-to-good reliability) was found for hs-CRP, D-Dimer, E-selectin, IL-10, MCP-1, MMP-3, oxLDL, sICAM-1 and sP-selectin in both groups, for sVCAM in healthy controls and for MMP-9, PAI-1 and sCD40L in PAD patients. CONCLUSIONS Single biomarker measurements are of limited utility due to large within-subject variation, both in PAD patients and healthy subjects. D-dimer, hs-CRP, MMP-9, MMP-3, PAI-1, sP-selectin and sICAM-1 are biomarkers with both higher mean levels in PAD patients and a favorable variation profile making them most suitable for future studies.
Resumo:
Efforts are ongoing to decrease the noise of the GRACE gravity field models and hence to arrive closer to the GRACE baseline. The most significant error sources belong the untreated errors in the observation data and the imperfections in the background models. The recent study (Bandikova&Flury,2014) revealed that the current release of the star camera attitude data (SCA1B RL02) contain noise systematically higher than expected by about a factor 3-4. This is due to an incorrect implementation of the algorithms for quaternion combination in the JPL processing routines. Generating improved SCA data requires that valid data from both star camera heads are available which is not always the case because the Sun and Moon at times blind one camera. In the gravity field modeling, the attitude data are needed for the KBR antenna offset correction and to orient the non-gravitational linear accelerations sensed by the accelerometer. Hence any improvement in the SCA data is expected to be reflected in the gravity field models. In order to quantify the effect on the gravity field, we processed one month of observation data using two different approaches: the celestial mechanics approach (AIUB) and the variational equations approach (ITSG). We show that the noise in the KBR observations and the linear accelerations has effectively decreased. However, the effect on the gravity field on a global scale is hardly evident. We conclude that, at the current level of accuracy, the errors seen in the temporal gravity fields are dominated by errors coming from sources other than the attitude data.
Resumo:
The effects of tetrahydrocannabinol (THC) and endogenous cannabinoids (endocannabinoids, ECs) are both mediated by activation of the cannabinoid receptors CB1 and CB2. Exogenous activation of these receptors by THC could therefore alter EC levels. We tested this hypothesis in healthy volunteers (n = 25) who received a large intravenous dose of THC (0.10 mg/kg). Effects on the EC system were quantified by serial measurements of plasma ECs after THC administration. Eleven blood samples were drawn during the first 5 h after THC administration and two more samples after 24 and 48 h. THC, its metabolites THC-OH (biologically active) and THC-COOH (non-active), and the ECs anandamide and 2-arachidonoylglycerol (2-AG) were quantified by liquid chromatography-mass spectrometry. EC-plasma levels showed a biphasic response after THC injection reaching maximal values at 30 min. Anandamide increased slightly from 0.58 ± 0.21 ng/ml at baseline to 0.64 ± 0.24 ng/ml (p < 0.05) and 2-AG from 7.60 ± 4.30 ng/ml to 9.50 ± 5.90 ng/ml (p < 0.05). After reaching maximal concentrations, EC plasma levels decreased markedly to a nadir of 300 min after THC administration (to 0.32 ± 0.15 ng/ml for anandamide and to 5.50 ± 3.01 ng/ml for 2-AG, p < 0.05). EC plasma concentrations returned to near baseline levels until 48 h after the experiment. THC (0.76 ± 0.16 ng/ml) and THC-OH (0.36 ± 0.17 ng/ml) were still measurable at 24 h and remained detectible until 48 h after THC administration. Although the underlying mechanism is not clear, high doses of intravenous THC appear to influence endogenous cannabinoid concentrations and presumably EC-signalling.
Resumo:
Sport participation has often been the topic in sports science and it could be shown that in Europe the population of northern and western countries are more often physically active than southern and eastern countries (European Commission, 2014). In Switzerland the physical activity of the Swiss population also differs between the linguistic regions. The German speaking population is more often physically active than the French or Italian speaking part (Stamm & Lamprecht, 2008). To explain the differences in sport participation structural and cultural factors have been discussed. Because within a country homogenous structural conditions can be assumed, the aim of this study is to analyse how socio-cultural factors correlate with sport participation of adolescents and young adults. In order to analyse this research question, Bourdieu’s concept of habitus (1984) has been used as theoretical background. This sport-related concept of habitus considers cultural determined values, the attribution of meaning and patterns of action which is socially determined and have an influence on individual actions and therefore also on the sport practise. On this basis, a qualitative study including guideline-based interviews with German (n=5) and French (n=3) speaking adolescents and young adults at the age of 16 to 24 (M=21.4) were held in two different linguistic regions of Switzerland. To analyse the interviews the documentary method was applied (Bohnsack, 2010). Initial findings reveal that there are different sport related values, attributions of meanings and patterns of action also called framework of orientations concerning topics like body, health and leisure which correlate with the habitual sports practise in the two different linguistic regions. This study illustrates that the habitus is culturally shaped and that it could help to understand the meaning of socio-cultural factors for sport participation.
Resumo:
Listeria (L.) monocytogenes is an environmental bacterium that may become an intracellular pathogen upon ingestion to cause gastroenteritis, septicaemia, abortions, and/or fatal infections of the central nervous system. We here describe a L. monocytogenes field strain (JF5171) isolated from a bovine placenta in the context of abortion, which exhibited attenuation in bovine brain-slice cultures. The whole genome of strain JF5171 was sequenced, and the invasion, replication, and intercellular spread of JF5171 were further analyzed by quantification of colony forming units and immunofluorescence studies. Phospholipase and hemolysis activity of JF5171 were also quantified along with transcription levels of actA, hly and prfA. The data obtained were compared to those of the widely used L. monocytogenes reference strain, EGD-e. JF5171 exhibited reduced replication and lower levels of phospholipase and hemolysis activity. Invasion and cell-to-cell spread was strongly decreased compared to EGD-e, and actin polymerization was absent. A frame shift deletion was identified in the JF5171 coding region of the major regulator for virulence, prfA. This resulted in a truncated C-terminus sequence (WEN* vs. WGKLN*). In addition, a point mutation resulted in a lysine to arginine substitution at amino acid position 197. Complementation with prfA from EGD-e and with (EGD-e) prfA-K197N increased the replication and spread efficiency of JF5171. In contrast, complementation with the truncated version of prfA had no effect. Taken together, these results suggest that the truncated C-terminus of prfA considerably contributes to the strongly attenuated phenotype observed in vitro.
Resumo:
Seismological data from recent subduction earthquakes suggest that megathrust earthquakes induce transient stress changes in the upper plate that shift accretionary wedges into an unstable state. These stress changes have, however, never been linked to geological structures preserved in fossil accretionary complexes. The importance of coseismically induced wedge failure has therefore remained largely elusive. Here we show that brittle faulting and vein formation in the palaeo-accretionary complex of the European Alps record stress changes generated by subduction-related earthquakes. Early veins formed at shallow levels by bedding-parallel shear during coseismic compression of the outer wedge. In contrast, subsequent vein formation occurred by normal faulting and extensional fracturing at deeper levels in response to coseismic extension of the inner wedge. Our study demonstrates how mineral veins can be used to reveal the dynamics of outer and inner wedges, which respond in opposite ways to megathrust earthquakes by compressional and extensional faulting, respectively.
Resumo:
Ependymal tumors across age groups are currently classified and graded solely by histopathology. It is, however, commonly accepted that this classification scheme has limited clinical utility based on its lack of reproducibility in predicting patients' outcome. We aimed at establishing a uniform molecular classification using DNA methylation profiling. Nine molecular subgroups were identified in a large cohort of 500 tumors, 3 in each anatomical compartment of the CNS, spine, posterior fossa, supratentorial. Two supratentorial subgroups are characterized by prototypic fusion genes involving RELA and YAP1, respectively. Regarding clinical associations, the molecular classification proposed herein outperforms the current histopathological classification and thus might serve as a basis for the next World Health Organization classification of CNS tumors.
Resumo:
Commoditization and virtualization of wireless networks are changing the economics of mobile networks to help network providers (e.g., MNO, MVNO) move from proprietary and bespoke hardware and software platforms toward an open, cost-effective, and flexible cellular ecosystem. In addition, rich and innovative local services can be efficiently created through cloudification by leveraging the existing infrastructure. In this work, we present RANaaS, which is a cloudified radio access network delivered as a service. RANaaS provides the service life-cycle of an ondemand, elastic, and pay as you go 3GPP RAN instantiated on top of the cloud infrastructure. We demonstrate an example of realtime cloudified LTE network deployment using the OpenAirInterface LTE implementation and OpenStack running on commodity hardware as well as the flexibility and performance of the platform developed.