895 resultados para Blackmore, R. D. (Richard Doddridge), 1825-1900.
Resumo:
Anthocyanin accumulation is coordinated in plants by a number of conserved transcription factors. In apple (Malus × domestica), an R2R3 MYB transcription factor has been shown to control fruit flesh and foliage anthocyanin pigmentation (MYB10) and fruit skin color (MYB1). However, the pattern of expression and allelic variation at these loci does not explain all anthocyanin-related apple phenotypes. One such example is an open-pollinated seedling of cv Sangrado that has green foliage and develops red flesh in the fruit cortex late in maturity. We used methods that combine plant breeding, molecular biology, and genomics to identify duplicated MYB transcription factors that could control this phenotype. We then demonstrated that the red-flesh cortex phenotype is associated with enhanced expression of MYB110a, a paralog of MYB10. Functional characterization of MYB110a showed that it was able to up-regulate anthocyanin biosynthesis in tobacco (Nicotiana tabacum). The chromosomal location of MYB110a is consistent with a whole-genome duplication event that occurred during the evolution of apple within the Maloideae family. Both MYB10 and MYB110a have conserved function in some cultivars, but they differ in their expression pattern and response to fruit maturity.
Resumo:
Background Kiwifruit (Actinidia spp.) are a relatively new, but economically important crop grown in many different parts of the world. Commercial success is driven by the development of new cultivars with novel consumer traits including flavor, appearance, healthful components and convenience. To increase our understanding of the genetic diversity and gene-based control of these key traits in Actinidia, we have produced a collection of 132,577 expressed sequence tags (ESTs). Results The ESTs were derived mainly from four Actinidia species (A. chinensis, A. deliciosa, A. arguta and A. eriantha) and fell into 41,858 non redundant clusters (18,070 tentative consensus sequences and 23,788 EST singletons). Analysis of flavor and fragrance-related gene families (acyltransferases and carboxylesterases) and pathways (terpenoid biosynthesis) is presented in comparison with a chemical analysis of the compounds present in Actinidia including esters, acids, alcohols and terpenes. ESTs are identified for most genes in color pathways controlling chlorophyll degradation and carotenoid biosynthesis. In the health area, data are presented on the ESTs involved in ascorbic acid and quinic acid biosynthesis showing not only that genes for many of the steps in these pathways are represented in the database, but that genes encoding some critical steps are absent. In the convenience area, genes related to different stages of fruit softening are identified. Conclusion This large EST resource will allow researchers to undertake the tremendous challenge of understanding the molecular basis of genetic diversity in the Actinidia genus as well as provide an EST resource for comparative fruit genomics. The various bioinformatics analyses we have undertaken demonstrates the extent of coverage of ESTs for genes encoding different biochemical pathways in Actinidia.
Resumo:
According to 2011 Australian Census figures, embedded creative employees (creative employees not working in the core Creative Industries) make up 2 per cent (or a total of 17 635) of manufacturing industry employees. The average for all industries is 1.6 per cent. In the 2011–2012 financial year the manufacturing industry formed 7.3 per cent of Australia’s gross domestic product (GDP), contributing approximately AU$106.5 billion to the economy (Department of Industry, Innovation, Science, Research and Tertiary Education 2013). Manufacturing is central to innovation, accounting for over one-quarter of all business expenditure in R&D in 2010–2011, representing around AU$4.8 billion invested in R&D (ibid.). Facing challenges such as sustainability concerns, ever-increasing offshore production and the global financial crisis, the Australian manufacturing industry needs to remain relevant and competitive to succeed. Innovation is one way to do this. Given the contribution of the manufacturing industry to the Australian economy, and the above-average portion of embedded creatives in manufacturing, it is important to consider what exactly embedded creatives add to the industry. This chapter, inspired by the Getting Creative in Healthcare report (Pagan, Higgs and Cunningham 2008), examines the contribution of embedded creatives to innovation in the manufacturing industry via case studies and supplemental data.
Resumo:
Macrophonics II presents new Australian work emerging from the leading edge of performance interface research. The program addresses the emerging dialogue between traditional media and emerging digital media, as well as dialogues across a broad range of musical traditions. Recent technological developments are causing a complete reevaluation of the relationships between media and genres in art, and Macrophonics II presents a cross-section of responses to this situation. Works in the program foreground an approach to performance that integrates sensors with novel performance control devices, and/or examine how machines can be made musical in performance. The program presents works by Australian artists Donna Hewitt, Julian Knowles and Wade Marynowsky, with choreography by Avril Huddy and dance performance by Lizzie and Zaimon Vilmanis. From sensor-based microphones and guitars, through performance a/v, to post-rock dronescapes, movement inspired works and experimental electronica, Macrophonics II provides a broad and engaging survey of new performance approaches in mediatised environments. Initial R&D for the work was supported by a range of institutions internationally, including the Australia Council for the Arts, Arts Queensland, STEIM (Holland) and the Nes Artist Residency (Iceland).
Resumo:
Scramjet-based launch systems offer considerable promise for safe, reliable and economical access to space. A general Scramjets introduction is first provided, followed by the specifics of Australian Scramjet Research and the recent progress in inlet-injection radical-farming scramjets as part of the SCRAMSPACE program. Through both flight and ground tests, leveraging Australias world leadership in scramjet R&D, the SCRAMSPACE project is designed to answer key scientific and technological questions and build an industry-ready talent pool for a future Australian space industry. An extensive descriptions of all phases of the development of the SCRAMSPACE I scramjet-powered free-flight experiment are described in these lecture notes.
Resumo:
Filling the need for a single work specifically addressing how to use plasma for the fabrication of nanoscale structures, this book is the first to cover plasma deposition in sufficient depth. The author has worked with numerous R&D institutions around the world, and here he begins with an introductory overview of plasma processing at micro- and nanoscales, as well as the current problems and challenges, before going on to address surface preparation, generation and diagnostics, transport and the manipulation of nano units.
Resumo:
It is commonly believed that in order to synthesize high-quality hydrogenated amorphous silicon carbide (a-Si1-xCx : H) films at competitive deposition rates it is necessary to operate plasma discharges at high power regimes and with heavy hydrogen dilution. Here we report on the fabrication of hydrogenated amorphous silicon carbide films with different carbon contents x (ranging from 0.09 to 0.71) at high deposition rates using inductively coupled plasma (ICP) chemical vapour deposition with no hydrogen dilution and at relatively low power densities (∼0.025 W cm -3) as compared with existing reports. The film growth rate R d peaks at x = 0.09 and x = 0.71, and equals 18 nm min-1 and 17 nm min-1, respectively, which is higher than other existing reports on the fabrication of a-Si1-xCx : H films. The extra carbon atoms for carbon-rich a-Si1-xCx : H samples are incorporated via diamond-like sp3 C-C bonding as deduced by Fourier transform infrared absorption and Raman spectroscopy analyses. The specimens feature a large optical band gap, with the maximum of 3.74 eV obtained at x = 0.71. All the a-Si1-xCx : H samples exhibit low-temperature (77 K) photoluminescence (PL), whereas only the carbon-rich a-Si1-xCx : H samples (x ≥ 0.55) exhibit room-temperature (300 K) PL. Such behaviour is explained by the static disorder model. High film quality in our work can be attributed to the high efficiency of the custom-designed ICP reactor to create reactive radical species required for the film growth. This technique can be used for a broader range of material systems where precise compositional control is required. © 2008 IOP Publishing Ltd.
Resumo:
This Special Issue of New Technology, Work and Employment has been prompted by the increasing awareness in many countries of the need to maintain and grow their science and innovation base. The development of science, engineering, technology and mathematics (STEM) skills and capacity is seen as vital for economic development and prosperity through its impact on national and regional research and development (R&D), technological advancement, and innovation potential.
Resumo:
The aims of the project were to scope and develop sustainable energy curriculum frameworks for Australian higher education Institutions that meet the needs of Australian and international student graduates and employers, both now and into the near future. The focus was on student centred learning and outcomes and to support graduates with the knowledge, skills and generic attributes required to work in the rapidly expanding sustainable energy industry in Australia and globally. The outputs of the project are designed to be relevant to specialist Sustainable Engineering and Energy Studies programs, as well as conventional engineering, science and humanities and social science programs that have a sustainable energy focus or major.
Resumo:
The changes to the R&D tax concession in 2011 were touted as the biggest reform to business innovation policy in over a decade. Three years later, as part of the 2014 Federal Budget, a reduction in the concession rates was announced. While the most recent of the pro-posed changes are designed to align with the reduction in company tax rate, the Australian Federal Government also indicated that the gain to revenue from the reduction in the incentive scheme will be redirected by the Government to repair the Budget and fund policy priori-ties. The consequence is that the R&D concessions, while designed to encourage innovation, are clearly linked with the tax system. As such, the first part of this article considers whether the R&D concession is a changing tax for changing times. Leading on from part one, this article also addresses a second question of ‘what’s tax got to do with it’? To answer this question, the article argues that, rather than ever being substantive tax reform, the constantly changing measures simply alter the criteria and means by which companies become eligible for a Federal Government subsidy for qualifying R&D activity, whatever that amount is. It further argues that when considered as part of the broader innovation agenda, all R&D tax concessions should be evaluated as a government spending program in the same way as any direct spending on innovation. When this is done, the tax regime is arguably merely the administrative policy instrument by which the subsidy is delivered. However, this may not be best practice to distribute those funds fairly, efficiently, and without distortion, while at the same time maintaining adequate government control and accountability. Finally, in answering the question of ‘what’s tax got to do with it?’ the article concludes that the answer is: very little.
Resumo:
New product innovation has been identified as the key to firms' marketplace success, profit and survival. Yet, the failure rate for new products is high. Because of the high costs associated with new product development, there is considerable theoretical and managerial interest in how to minimize the high failure rates of new products and what separates new product winners from losers. This study focuses on individual level ambidexterity – namely head of the R&D departments' capacity to engage in creativity and attention-to-detail simultaneously, a skill involving different centers of attention, and relying on somewhat incompatible behaviors and processes. The ability to engage in these behaviors simultaneously is seen as being ambidextrous. Drawing from the data of 150 advanced manufacturing firms in India (gathered from one CEO and one head of the R&D department for each firm), the results show that when an individual head of R&D engages heavily only in creativity, too many new, risky ideas may come and when he/she engages heavily only in attention-to-detail, he/she may suffer through a lack of novel ideas. Both approaches limit individual's contribution to enhancing product innovation – financial performance relationship. The results also show that an individual head of R&D needs to engage in high levels creativity and attention-to-detail in the pursuit of enhancing product innovation to achieve superior financial performance.
Resumo:
Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging|allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.
Resumo:
Drawing upon an action learning perspective, we hypothesized that a leaders learning of project leadership skills would be related to facilitative leadership, team reflexivity, and team performance. Secondly, we proposed that new and experienced leaders would differ in the amount they learn from their current and recent experience as project managers, and in the strength of the relationship between their self-reported learning, facilitative leadership, and team reflexivity. We conducted a 1-year longitudinal study of 50 R&D teams, led by 25 new and 25 experienced leaders, with 313 team members and 22 project customers, collecting both quantitative and qualitative data. We found evidence of a significant impact of the leaders learning on subsequent facilitative leadership and team performance 8 and 12 months later, suggesting a lag between learning leadership skills and translating these skills into leadership behavior. The findings contribute to an understanding of how leaders consolidate their learned experience into facilitative leadership behavior.
Resumo:
There is an increased concern about airborne particles not only because of their environmental effects, but also due to their potential adverse health effects on humans, especially children. Despite the growing evidence of airborne particles having an impact on children’s health, there have been limited studies investigating the long term health effects as well as the chemical composition of ambient air which further helps in determining their toxicity. Therefore, a systematic study on the chemical composition of air in school environment has been carried out in Brisbane, which is known as “Ultrafine Particles from Traffic Emissions on Children’s Health” (UPTECH). This study is also a part of the larger project focusing on analysis of the chemical composition of ambient air, as well as source apportionment and the quantification of ambient concentrations of organic pollutants in the vicinity of schools. However, this particular paper presents some of the results on concentration of different Volatile Organic Compounds in both indoor and outdoor location from different schools. The database consisted of 750 samples (500 outdoor and 250 indoor) collected for VOCs at 25 different schools. The sampling and analysis were conducted following the standard methods. A total of 90 individual VOCs were identified from the schools studied. Compounds such as toluene, acetic acid, nonanal, benzaldehyde, 2- ethyl 1- hexanol, limonene were the most common in indoors whereas isopentane, toluene, hexane, heptane were dominant in outdoors. The indoor/ outdoor ratio of average sum of VOCs were found to be more than one in most of the schools indicating that there might be additional indoor sources along with the outdoor air in those schools. However, further expansion of the study in relation to source apportionment, correlating with traffic and meteorological data is in progress.