949 resultados para Biomarker stratification


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stress analysis within carotid plaques based on in vivo MR imaging has shown to be useful for the identification of vulnerable atheroma. This study is to investigate whether magnetic resonance imaging (MRI) based-biomechanical stress analysis of carotid plaques can differentiate acute symptomatic and asymptomatic patients. 54 asymptomatic and 45 acute symptomatic patients underwent in vivo multi-contrast MRI of the carotid arteries. Plaque geometry used for finite element analysis was derived from in vivo MR images at the site of maximum and minimum plaque burden. In total 198 slices were used for the computational simulations. A pre shrink technique was used to refine the simulation. Maximum principle stress at the vulnerable plaque sites (i.e. critical stress) was extracted for the selected slices and a comparison was performed between the two groups. Critical stress at the site of maximum plaque burden is significantly higher in acute symptomatic patients as compared to asymptomatic patients [median: 198.0kPa (inter quartile range (IQR) = (119.8 - 359.0) vs. 138.4kPa (83.8, 242.6), p=0.04]. No significant difference was found at the minimum plaque burden site between the two groups [196.7kPa (133.3- 282.7) vs. 182.4kPa (117.2 - 310. 6), p=0.82). Stress analysis at the site of maximal plaque burden can be effectively used for differentiating acute symptomatic carotid plaques from asymptomatic plaques. This maybe potentially used for development of biomechanical risk stratification criteria based on plaque burden in future studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: It remains controversial whether patients with severe disease of the internal carotid artery and a coexisting stenotic lesion downstream would benefit from a carotid endarterectomy (CEA) of the proximal lesion. The aim of this study was to simulate the hemodynamic and wall shear effects of in-tandem internal carotid artery stenosis using a computational fluid dynamic (CFD) idealized model to give insight into the possible consequences of CEA on these lesions. Methods: A CFD model of steady viscous flow in a rigid tube with two asymmetric stenoses was introduced to simulate blood flow in arteries with multiple constrictions. The effect of varying the distance between the two stenoses, and the severity of the upstream stenosis on the pressure and wall shear stress (WSS) distributions on the second plaque, was investigated. The influence of the relative positions of the two stenoses was also assessed. Results: The distance between the plaques was found to have minimal influence on the overall hemodynamic effect except for the presence of a zone of low WSS (range -20 to 30 dyne/cm2) adjacent to both lesions when the two stenoses were sufficiently close (<4 times the arterial diameter). The upstream stenosis was protective if it was larger than the downstream stenosis. The relative positions of the stenoses were found to influence the WSS but not the pressure distribution. Conclusions: The geometry and positions of the lesions need to be considered when considering the hemodynamic effects of an in-tandem stenosis. Low WSS is thought to cause endothelial dysfunction and initiate atheroma formation. The fact that there was a flow recirculation zone with low WSS in between the two stenoses may demonstrate how two closely positioned plaques may merge into one larger lesion. Decision making for CEA may need to take into account the hemodynamic situation when an in-tandem stenosis is found. CFD may aid in the risk stratification of patients with this problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Aneurysm expansion rate is an important indicator of the potential risk of abdominal aortic aneurysm (AAA) rupture. Stress within the AAA wall is also thought to be a trigger for its rupture. However, the association between aneurysm wall stresses and expansion of AAA is unclear. Methods and Results Forty-four patients with AAAs were included in this longitudinal follow-up study. They were assessed by serial abdominal ultrasonography and computed tomography scans if a critical size was reached or a rapid expansion occurred. Patient-specific 3-dimensional AAA geometries were reconstructed from the follow-up computed tomography images. Structural analysis was performed to calculate the wall stresses of the AAA models at both baseline and final visit. A nonlinear large-strain finite element method was used to compute the wall-stress distribution. The relationship between wall stresses and expansion rate was investigated. Slowly and rapidly expanding aneurysms had comparable baseline maximum diameters (median, 4.35 cm [interquartile range, 4.12 to 5.0 cm] versus 4.6 cm [interquartile range, 4.2 to 5.0 cm]; P=0.32). Rapidly expanding AAAs had significantly higher shoulder stresses than slowly expanding AAAs (median, 300 kPa [interquartile range, 280 to 320 kPa] versus 225 kPa [interquartile range, 211 to 249 kPa]; P=0.0001). A good correlation between shoulder stress at baseline and expansion rate was found (r=0.71; P=0.0001). Conclusion A higher shoulder stress was found to have an association with a rapidly expanding AAA. Therefore, it may be useful for estimating the expansion of AAAs and improve risk stratification of patients with AAAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Growth rate of abdominal aortic aneurysm (AAA) is thought to be an important indicator of the potential risk of rupture. Wall stress is also thought to be a trigger for its rupture. However, stress change during the expansion of an AAA is unclear. Forty-four patients with AAAs were included in this longitudinal follow-up study. They were assessed by serial abdominal ultrasonography and computerized tomography (CT) scans if a critical size was reached or a rapid expansion occurred. Patient-specific 3-dimensional AAA geometries were reconstructed from the follow-up CT images. Structural analysis was performed to calculate the wall stresses of the AAA models at both baseline and final visit. A non-linear large-strain finite element method was used to compute the wall stress distribution. The average growth rate was 0.66cm/year (range 0-1.32 cm/year). A significantly positive correlation between shoulder tress at baseline and growth rate was found (r=0.342; p=0.02). A higher shoulder stress is associated with a rapidly expanding AAA. Therefore, it may be useful for estimating the growth expansion of AAAs and further risk stratification of patients with AAAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite recent therapeutic advances, acute ischemic complications of atherosclerosis remain the primary cause of morbidity and mortality in Western countries, with carotid atherosclerotic disease one of the major preventable causes of stroke. As the impact of this disease challenges our healthcare systems, we are becoming aware that factors influencing this disease are more complex than previously realized. In current clinical practice, risk stratification relies primarily on evaluation of the degree of luminal stenosis and patient symptomatology. Adequate investigation and optimal imaging are important factors that affect the quality of a carotid endarterectomy (CEA) service and are fundamental to patient selection. Digital subtraction angiography is still perceived as the most accurate imaging modality for carotid stenosis and historically has been the cornerstone of most of the major CEA trials but concerns regarding potential neurological complications have generated substantial interest in non-invasive modalities, such as contrast-enhanced magnetic resonance angiography. The purpose of this review is to give an overview to the vascular specialist of the current imaging modalities in clinical practice to identify patients with carotid stenosis. Advantages and disadvantages of each technique are outlined. Finally, limitations of assessing luminal stenosis in general are discussed. This article will not cover imaging of carotid atheroma morphology, function and other emerging imaging modalities of assessing plaque risk, which look beyond simple luminal measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: The aim of this study was to evaluate the effects of low-dose (10 mg) and high-dose (80 mg) atorvastatin on carotid plaque inflammation as determined by ultrasmall superparamagnetic iron oxide (USPIO)-enhanced carotid magnetic resonance imaging (MRI). The hypothesis was that treatment with 80 mg atorvastatin would demonstrate quantifiable changes in USPIO-enhanced MRI-defined inflammation within the first 3 months of therapy. Background: Preliminary studies indicate that USPIO-enhanced MRI can identify macrophage infiltration in human carotid atheroma in vivo and hence may be a surrogate marker of plaque inflammation. Methods: Forty-seven patients with carotid stenosis >40% on duplex ultrasonography and who demonstrated intraplaque accumulation of USPIO on MRI at baseline were randomly assigned in a balanced, double-blind manner to either 10 or 80 mg atorvastatin daily for 12 weeks. Baseline statin therapy was equivalent to 10 mg of atorvastatin or less. The primary end point was change from baseline in signal intensity (ΔSI) on USPIO-enhanced MRI in carotid plaque at 6 and 12 weeks. Results: Twenty patients completed 12 weeks of treatment in each group. A significant reduction from baseline in USPIO-defined inflammation was observed in the 80-mg group at both 6 weeks (ΔSI 0.13; p = 0.0003) and at 12 weeks (ΔSI 0.20; p < 0.0001). No difference was observed with the low-dose regimen. The 80-mg atorvastatin dose significantly reduced total cholesterol by 15% (p = 0.0003) and low-density lipoprotein cholesterol by 29% (p = 0.0001) at 12 weeks. Conclusions: Aggressive lipid-lowering therapy over a 3-month period is associated with significant reduction in USPIO-defined inflammation. USPIO-enhanced MRI methodology may be a useful imaging biomarker for the screening and assessment of therapeutic response to "anti-inflammatory" interventions in patients with atherosclerotic lesions. (Effects of Atorvastatin on Macrophage Activity and Plaque Inflammation Using Magnetic Resonance Imaging [ATHEROMA]; NCT00368589).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the mechanical triggers that may cause plaque rupture. Wall shear stress (WSS) and pressure gradient are the direct mechanical forces acting on the plaque in a stenotic artery. Their influence on plaque stability is thought to be controversial. This study used a physiologically realistic, pulsatile flow, two-dimensional, cine phase-contrast MRI sequence in a patient with a 70% carotid stenosis. Instead of considering the full patient-specific carotid bifurcation derived from MRI, only the plaque region has been modelled by means of the idealised flow model. WSS reached a local maximum just distal to the stenosis followed by a negative local minimum. A pressure drop across the stenosis was found which varied significantly during systole and diastole. The ratio of the relative importance of WSS and pressure was assessed and was found to be less than 0.07% for all time phases, even at the throat of the stenosis. In conclusion, although the local high WSS at the stenosis may damage the endothelium and fissure plaque, the magnitude of WSS is small compared with the overall loading on plaque. Therefore, pressure may be the main mechanical trigger for plaque rupture and risk stratification using stress analysis of plaque stability may only need to consider the pressure effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arterial mechanical property may be a potential variable for risk stratification. Large artery and central arterial compliance have been shown not only to correlate well with overall cardiovascular outcome in large epidemiological studies [1, 2] but also to correlate with coronary atherosclerotic burden as measured by conventional angiography [3]. Until recently, real-time B-mode ultrasound combined with simultaneous blood pressure measurements have been used to assess large artery compliance [4]. These techniques have an excellent temporal resolution but are unable to provide adequate spatial resolution to determine changes in vessel area as opposed to diameter and make the assumption that the vessel is perfectly round. Attempts to use MR imaging to measure large artery compliance have been published previously [5]. However, they have not utilised simultaneous blood pressure measurements during sequence acquisition. We report a technique using regular and simultaneous blood pressure measurement during 2 dimensional phase contrast magnetic resonance imaging 2DPC-MRI to determine local carotid compliance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and purpose: Inflammation is a risk factor the vulnerable atheromatous plaque. This can be detected in vivo on high-resolution magnetic resonance (MR) imaging using a contrast agent, Sinerem™, an ultra-small super-paramagnetic iron oxide (USPIO). The aim of this study was to explore whether there is a difference in the degree of MR defined inflammation using USPIO particles, between symptomatic and asymptomatic carotid plaques. We report further on its T1 effect of enhancing the fibrous cap, which may allow dual contrast resolution of carotid atheroma. Methods: Twenty patients with carotid stenosis (10 symptomatic and 10 asymptomatic) underwent multi-sequence MR imaging before and 36 h post-USPIO infusion. Images were manually segmented into quadrants and signal change in each quadrant was calculated following USPIO administration. Mean signal change across all quadrants were compared between the two groups. Results: Symptomatic patients had significantly more quadrants with a signal drop than asymptomatic individuals (75% vs. 32%, p < 0.01). Asymptomatic plaques had more quadrants with signal enhancement than symptomatic ones (68% vs. 25%, p < 0.05); their mean signal change was also higher (46% vs. 15%, p < 0.01) and this appeared to correlate with a thicker fibrous cap on histology. Conclusions: Symptomatic patients had more quadrants with signal drop suggesting larger inflammatory infiltrates. Asymptomatic individuals showed significantly more enhancement possibly suggesting greater stability as a result of thicker fibrous caps. However, some asymptomatic plaques also had focal areas of signal drop, suggesting an occult macrophage burden. If validated by larger studies, USPIO may be a useful dual contrast agent able to improve risk stratification of patients with carotid stenosis and inform selection for intervention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Because many acute cerebral ischemic events are caused by rupture of vulnerable carotid atheroma and subsequent thrombosis, the present study used both idealized and patient-specific carotid atheromatous plaque models to evaluate the effect of structural determinants on stress distributions within plaque. Methods and Results Using a finite element method, structural analysis was performed using models derived from in vivo high-resolution magnetic resonance imaging (MRI) of carotid atheroma in 40 non-consecutive patients (20 symptomatic, 20 asymptomatic). Plaque components were modeled as hyper-elastic materials. The effects of varying fibrous cap thickness, lipid core size and lumen curvature on plaque stress distributions were examined. Lumen curvature and fibrous cap thickness were found to be major determinants of plaque stress. The size of the lipid core did not alter plaque stress significantly when the fibrous cap was relatively thick. The correlation between plaque stress and lumen curvature was significant for both symptomatic (p = 0.01; correlation coefficient: 0.689) and asymptomatic patients (p = 0.01; correlation coefficient: 0.862). Lumen curvature in plaques of symptomatic patients was significantly larger than those of asymptomatic patients (1.50±1.0mm-1 vs 1.25±0.75 mm-1; p = 0.01). Conclusion Specific plaque morphology (large lumen curvature and thin fibrous cap) is closely related to plaque vulnerability. Structural analysis using high-resolution MRI of carotid atheroma may help in detecting vulnerable atheromatous plaque and aid the risk stratification of patients with carotid disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Rupture of vulnerable atheromatous plaque in the carotid and coronary arteries often leads to stroke and heart attack respectively. The role of calcium deposition and its contribution to plaque stability is controversial. This study uses both an idealized and a patient-specific model to evaluate the effect of a calcium deposit on the stress distribution within an atheromatous plaque. Methods: Using a finite-element method, structural analysis was performed on an idealized plaque model and the location of a calcium deposit within it was varied. In addition to the idealized model, in vivo high-resolution MR imaging was performed on 3 patients with carotid atheroma and stress distributions were generated. The individual plaques were chosen as they had calcium at varying locations with respect to the lumen and the fibrous cap. Results: The predicted maximum stress was increased by 47.5% when the calcium deposit was located in the thin fibrous cap in the model when compared with that in a model without a deposit. The result of adding a calcium deposit either to the lipid core or remote from the lumen resulted in almost no increase in maximal stress. Conclusion: Calcification at the thin fibrous cap may result in high stress concentrations, ultimately increasing the risk of plaque rupture. Assessing the location of calcification may, in the future, aid in the risk stratification of patients with carotid stenosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been well accepted that over 50% of cerebral ischemic events are the result of rupture of vulnerable carotid atheroma and subsequent thrombosis. Such strokes are potentially preventable by carotid interventions. Selection of patients for intervention is currently based on the severity of carotid luminal stenosis. It has been, however, widely accepted that luminal stenosis alone may not be an adequate predictor of risk. To evaluate the effects of degree of luminal stenosis and plaque morphology on plaque stability, we used a coupled nonlinear time-dependent model with flow-plaque interaction simulation to perform flow and stress/strain analysis for stenotic artery with a plaque. The Navier-Stokes equations in the Arbitrary Lagrangian-Eulerian (ALE) formulation were used as the governing equations for the fluid. The Ogden strain energy function was used for both the fibrous cap and the lipid pool. The plaque Principal stresses and flow conditions were calculated for every case when varying the fibrous cap thickness from 0.1 to 2mm and the degree of luminal stenosis from 10% to 90%. Severe stenosis led to high flow velocities and high shear stresses, but a low or even negative pressure at the throat of the stenosis. Higher degree of stenosis and thinner fibrous cap led to larger plaque stresses, and a 50% decrease of fibrous cap thickness resulted in a 200% increase of maximum stress. This model suggests that fibrous cap thickness is critically related to plaque vulnerability and that, even within presence of moderate stenosis, may play an important role in the future risk stratification of those patients when identified in vivo using high resolution MR imaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prostate cancer is a leading contributor to male cancer-related deaths worldwide. Kallikrein-related peptidases (KLKs) are serine proteases that exhibit deregulated expression in prostate cancer, with KLK3, or prostate specific antigen (PSA), being the widely-employed clinical biomarker for prostate cancer. Other KLKs, such as KLK2, show promise as prostate cancer biomarkers and, additionally, their altered expression has been utilised for the design of KLK-targeted therapies. There is also a large body of in vitro and in vivo evidence supporting their role in cancer-related processes. Here, we review the literature on studies to date investigating the potential of other KLKs, in addition to PSA, as biomarkers and in therapeutic options, as well as their current known functional roles in cancer progression. Increased knowledge of these KLK-mediated functions, including degradation of the extracellular matrix, local invasion, cancer cell proliferation, interactions with fibroblasts, angiogenesis, migration, bone metastasis and tumour growth in vivo, may help define new roles as prognostic biomarkers and novel therapeutic targets for this cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Population substructure and hybridization, among other factors, have the potential to cause erroneous associations in linkage disequilibrium (LD) mapping. Two closely related spotted gum eucalypts, Corymbia variegata and C. henryi (Myrtaceae) occur in sympatry in the east coast of Australia and potentially interbreed. They are morphologically similar but are distinguished as separate species based on capsule and foliage size. To determine whether they hybridize in nature and its implications for LD mapping, we investigated the level of molecular divergence between the two species at two sympatric locations separated by 300 kilometres. Very few individuals of intermediate morphology were identified, despite the two species occurring only metres apart. Analysis of genetic structure using 12 microsatellite loci showed that genetic differentiation between populations of the same species at different locations (FST = 0.07 for both species; p = 0.0001) was significantly higher than that observed between species at each location (mean FST = 0.02 and 0.04 for Cherry tree and Bunyaville respectively; p = 0.0001; all Mann-Whitney U-test p ≤ 0.01). No species-specific alleles or significant allele frequency differences were detected within a site, suggesting recurrent local gene flow between the two species. The lack of significant allele frequency differences implies no population stratification along taxonomic lines. This suggested that there is little concern for cryptic hybridization when sampling from sites of sympatry for LD mapping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are many reports of efficient embryo germination and the method has been optimized to suit subtropical low chill genotypes. However the subsequent growth, vigor, and ability of germinated embryos to develop and survive acclimatization is rarely reported. Many germinated embryos do not survive acclimatization, develop slowly, or fail to develop normally. Methods to improve plant development from in vitro embryo cultures are needed to improve the number of plants that survive to be useful in breeding programs. This paper describes an improved method of embryo rescue that significantly increases embryo shoot and root development that leads to increased plant survival. Four treatments: Woody Plant Media (WPM) solidified with agar, vermiculite with liquid WPM, vermiculite with WPM plus agar, and conventional stratification, were evaluated for embryo growth and subsequent plantlet development and survival for two low-chill peach and one low-chill nectarine cultivar. Highly significant improvements were found for shoot and root development of seedlings germinated in vermiculite based media compared to embryos germinated in conventional agar-based media. Vermiculite with WPM and agar improved plantlet growth subsequent to in vitro culture and significantly increased survival of germinated embryos resulting in more plants reaching the field.