985 resultados para Biology, Neuroscience|Health Sciences, Pharmacology|Chemistry, Biochemistry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitogen-activated protein kinase (MAPK) cascades are conserved eukaryotic signaling modules consisting of a MAPK, a MAPKK and a MAP3K. MAPK cascades are involved in many cellular responses including proliferation, differentiation, apoptosis, stress and immune responses. ^ The first part of this thesis describes the cloning and biochemical analysis of JNKK2, a member of MAPKK gene family. Our results demonstrate that JNKK2 is a specific JNK activator and activates the JNK-dependent signal transduction pathway in vivo by inducing c-Jun and ATF2-mediated gene expression. We also found that JNKK2 is specifically activated by a MAP3K MEKK2 through formation of MEKK2-JNKK2-JNK1 triple complex module. JNKK2 is likely to mediate specific upstream signals to activate JNK cascade. ^ The second part of this thesis describes biochemical and gene disruption analysis of MEKK3, a member of MAP3K gene family. We showed that overexpression of MEKK3 strongly activates both JNK and p38 MAPKs but only weakly activates ERK. MEKK−/− embryos die at about embryonic day (E) 11. MEKK3−/− embryos displayed defects in blood vessel development in the yolk sacs, and in the myocardium and endocardium development at E9.5. The angiogenesis in the head, intersomitic region and placenta was also abnormal. These results demonstrate that MEKK3, a member of MAP3K MEKK/STE11 subgene family, is essential for early embryonic cardiovascular development. Furthermore, it was found that disruption of MEKK3 did not alter the expression of vascular endothelial growth factor-1 (VEGF-1), angiopoietin-1, -2 and their respective receptors Flt-1, Flk-1, Tie-1, Tie-2. Finally, MEKK3 was shown to activate myocyte-specific enhancer factor 2C (MEF2C), a crucial transcription factor for early embryonic cardiovascular development through the p38 MAPK cascade, suggesting that MEF2C is one of the key targets of the MEEKK3 signaling pathway during early embryonic cardiovascular development. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adenosine has been implicated in chronic lung diseases such as asthma and COPD. Most physiological actions of adenosine are mediated through G-protein coupled adenosine receptors. Four subtypes of adenosine receptors have been identified, A1, A2A, A2B, and A 3. However, the specific roles of the various adenosine receptors in processes central to asthma and COPD are not well understood in part due to the lack of adequate animal models that examine the effect of adenosine on the development of lung disease. In this study we have investigated the expression and function of the A3 adenosine receptor in pulmonary eosinophilia and mucus production/secretion in adenosine deaminase (ADA)-deficient mice in which adenosine levels are elevated. ADA-deficient mice develop features of asthma and COPD, including lung eosinophilia and mucus hyperplasia in association with elevated lung adenosine levels. The A3 receptor was found to be expressed in eosinophils and mucus producing cells in the airways of ADA-deficient. Disruption of A3 receptor signaling in ADA-deficient mice by genetic removal of the receptor or treatment with MRS 1523, a selective A3 adenosine receptor antagonist, prevented airway eosinophilia and mucus production. Although eosinophils were decreased in the airways of ADA-deficient mice with disrupted A3 receptor signaling, elevations in circulating and lung interstitial eosinophils persisted, suggesting signaling through the A3 receptor is needed for the migration of eosinophils into the airways. Further examination of the role of the A3 receptor in mucus biology demonstrated that the A3 receptor is neither required nor is overexpression of the receptor in clara cells sufficient for mucus production in naive mice. Transgenic overexpression of the A3 receptor did elucidate a role for the A3 receptor in the secretion of mucus into the airways of ovalbumin challenged mice. These findings identify an important role for the A3 adenosine receptor in regulating lung eosinophilia and mucus secretion in inflammatory lung diseases. Therefore, the A3 adenosine receptor may represent a novel therapeutic target for the treatment and prevention of asthma. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To better understand the mechanisms of how the human prostacyclin receptor (1P) mediates vasodilation and platelet anti-aggregation through Gs protein coupling, a strategy integrating multiple approaches including high resolution NMR experiments, synthetic peptide, fluorescence spectroscopy, molecular modeling, and recombinant protein was developed and used to characterize the structure/function relationship of important segments and residues of the IP receptor and the α-subunit of the Gs protein (Gαs). The first (iLP1) and third (iLP3) intracellular loops of the IP receptor, as well as the Gαs C-terminal domain, relevant to the Gs-mediated IP receptor signaling, were first identified by observation of the effects of the mini gene-expressed corresponding protein segments in HEK293 cells which co-expressed the receptor and Gαs. Evidence of the IP iLP1 domain interacted with the Gαs C-terminal domain was observed by fluorescence and NMR spectroscopic studies using a constrained synthetic peptide, which mimicked the IP iLP1 domain, and the synthetic peptide, which mimicked Gαs C-terminal domain. The solution structural models and the peptide-peptide interaction of the two synthetic protein segments were determined by high resolution NMR spectroscopy. The important residues in the corresponding domains of the IP receptor and the Gαs predicted by NMR chemical shift mapping were used to guide the identification of their protein-protein interaction in cells. A profile of the residues Arg42 - Ala48 of the IP iLP1 domain and the three residues Glu392 ∼ Leu394 of the Gαs C-terminal domain involved in the IP/Gs protein coupling were confirmed by recombinant proteins. The data revealed an intriguing speculation on the mechanisms of how the signal of the ligand-activated IP receptor is transmitted to the Gs protein in regulating vascular functions and homeostasis, and also provided substantial insights into other prostanoid receptor signaling. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ras family of small GTPases (N-, H-, and K-Ras) is a group of important signaling mediators. Ras is frequently activated in some cancers, while others maintain low level activity to achieve optimal cell growth. In cells with endogenously low levels of active Ras, increasing Ras signaling through the ERK and p38 MAPK pathways can cause growth arrest or cell death. Ras requires prenylation – the addition of a 15-carbon (farnesyl) or 20-carbon (geranylgeranyl) group – to keep the protein anchored into membranes for effective signaling. N- and K-Ras can be alternatively geranylgeranylated (GG’d) if farnesylation is inhibited but are preferentially farnesylated. Small molecule inhibitors of farnesyltransferase (FTIs) have been developed as a means to alter Ras signaling. Our initial studies with FTIs in malignant and non-malignant cells revealed FTI-induced cell cycle arrest, reduced proliferation, and increased Ras signaling. These findings led us to the hypothesis that FTI induced increased GG’d Ras. We further hypothesized that the specific effects of FTI on cell cycle and growth result from increased signal strength of GG’d Ras. Our results did show that increase in GG’d K-Ras in particular results in reduced cell viability and cell cycle arrest. Genetically engineered constructs capable of only one type of prenylation confirmed that GG’d K-Ras recapitulated the effect of FTI in 293T cells. In tumor cell lines ERK and p38 MAPK pathways were both strongly activated in response to FTI, indicating the increased activity of GG’d K-Ras results in antiproliferative signals specifically through these pathways. These results collectively indicate FTI increases active GG’d K-Ras which activates ERK and p38 MAPKs to reduced cell viability and induce cell cycle arrest in malignant cells. This is the first report that identifies increased activity of GG’d K-Ras contributes to antineoplastic effects from FTI by increasing the activity of downstream MAPKs. Our observations suggest increased GG’d K-Ras activity, rather than inhibition of farnesylated Ras, is a major source of the cytostatic and cytotoxic effects of FTI. Our data may allow for determination of which patients would benefit from FTI by excluding tumors or diseases which have strong K-Ras signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I-compounds are newly discovered covalent DNA modifications detected by the $\sp{32}$P-postlabeling assay. They are age-dependent, tissue-specific and sex-different. The origin(s), chemistry and function(s) of I-compounds are unknown. The total level of I-compounds in 8-10 month old rat liver is 1 adduct in 10$\sp7$ nucleotides, which is not neglectable. It is proposed that I-compounds may play a role in spontaneous tumorigenesis and aging.^ In the present project, I-compounds were investigated by several different approaches. (1) Dietary modulation of I-compounds. (2) Comparison of I-compounds with persistent carcinogen DNA adducts and 5-methylcytosine. (3) Strain differences of I-compounds in relation to organ site spontaneous tumorigenesis. (4) Effects of nongenotoxic hepatocarcinogenes on I-compounds.^ It was demonstrated that the formation of I-compounds is diet-related. Rats fed natural ingredient diet exhibited more complex I-spot patterns and much higher levels than rats fed purified diet. Variation of major nutrients (carbohydrate, protein and fat) in the diet, produced quantitative differences in I-compounds of rat liver and kidney DNAs. Physiological level of vitamin E in the diet reduced intensity of one I-spot compared with vitamin E deficient diet. However, extremely high level of vitamin E in the diet gave extra spot and enhanced the intensities of some I-spots.^ In regenerating rat liver, I-compounds levels were reduced, as carcinogen DNA adducts, but not 5-methylcytosine, i.e. a normal DNA modification.^ Animals with higher incidences of spontaneous tumor or degenerative diseases tended to have a lower level of I-compounds.^ Choline devoid diet induced a drastic reduction of I-compound level in rat liver compared with choline supplemented diet. I-compound levels were reduced after multi-doses of carbon tetrachloride (CCl$\sb4$) exposure in rats and single dose exposure in mice. An inverse relationship was observed between I-compound level and DNA replication rate. CCl$\sb4$-related DNA adduct was detected in mice liver and intensities of some I-spots were enhanced 24 h after a single dose exposure.^ The mechanisms and explanations of these observations will be discussed. I-compounds are potentially useful indicators in carcinogenesis studies. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skin cancer is the most prevalent form of neoplasia, with over one million newcases diagnosed this year. UV radiation is a ubiquitous environmental agent that induces skin cancer. In addition to its carcinogenic effect, UV radiation also suppresses cell-mediated immune responses. This immune suppression is not only observed at the site of irradiation, but UV radiation also induces systemic immune suppression. Since UV radiation has a limited ability to penetrate the skin, the question of the mechanism of this systemic immune suppression arises. A number of studies have suggested that UV radiation induce systemic effects through the production of immunoregulatory cytokines, such as IL-4 and IL-10. These cytokines affect the immune response by altering systemic antigen presentation, specifically by suppressing the activation of Th1 cells while allowing the activation of Th2 cells. Because IL-12 is an important regulator of Th1 cell activation, we tested the hypothesis that administration of IL-12 could overcome UV-induced immune suppression. ^ The studies presented here are divided into dime specific aims. In the first specific aim, the ability of IL-12 to overcome UV-induced immune suppression was examined. IL-12 could overcome UV-induced immune suppression as well as prevent the generation of and neutralize the activity of preformed suppressor cells induced by UV radiation. In the second specific aim, the mechanism by which IL-12 overcomes UV-induced immune suppression was examined. IL-12 overcame UV-induced immune suppression by blocking the production of immunoregulatory cytokines such as IL-4, IL-10 and TNF-α. In the third specific aim, the effect of UV radiation on antigen presentation was investigated. UV radiation was found to decrease the production of biologically active IL-12. In addition, UV also increased the production of IL-12p40 homodimer, an antagonist of IL-12p70 heterodimer. This result suggests that IL-12 may have a dual role in the immune suppression induced by, UV radiation. On one hand the biologically active IL-12p70 heterodimer blocks UV-induced immune suppression. In contrast, IL-12p40 homodimer may mediate the suppressive effect of UV radiation. This paradox indicates that IL-12 may have a greater regulatory role in the immune response than was previously suspected. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the induction and physiological role of Thr18 and Ser20 phosphorylation of p53 in response to DNA damage caused by treatment with ionizing (IR) or ultraviolet (UV) radiation. Polyclonal antibodies specifically recognizing phospho-Thr18 and phospho-Ser20 were used to detect p53 phosphorylation in vivo. Analyses of five wild-type (wt) p53 containing cell lines revealed lineage specific differences in phosphorylation of Thr18 and Ser20 after treatment with IR or UV. Importantly, the phosphorylation of p53 at Thr18 and Ser20 correlated with induction of the p53 downstream targets p21Waf1/Cip1 (p21) and Mdm-2, suggesting a transactivation enhancing role for Thr18 and Ser20 phosphorylation. Whereas Thr18 phosphorylation appears to abolish side-chain hydrogen bonding between Thr18 and Asp21, Ser20 phosphorylation may introduce charge attraction between Ser20 and Lys24. Both of these interactions could contribute to stabilizing α-helical conformation within the p53 transactivation domain. Mutagenesis-derived phosphorylation mimicry of p53 at Thr18 and Ser20 by Asp substitution (p53T18D/S20D) altered transactivation domain conformation and significantly reduced the interaction of p53 with the transactivation repressor Mdm-2. Mdm-2 interaction was also reduced with p53 containing a single site Asp substitution at Ser20 (p53S20D) and with the Thr18/Asp21 hydrogen bond disrupting p53 mutants p53T18A, p53T18D and p53D21A. In contrast, no direct effect was observed on the interaction of p53T18A, p53T18D and p53D21A with the basal transcription factor TAF II31. However, prior incubation of p53T18A, p53T18D and p53D21A with Mdm-2 modulated TAFII31 interaction, suggesting Mdm-2 blocks the accessibility of p53 to TAFII31. Consistently, p53-null cells transfected with p53S20D and p53T18A, p53T18D and p53D21A demonstrated enhanced endogenous p21 expression; transfection with p53T18D/S20D most significantly enhanced p21 and fas/APO-1 (fas ) expression. Expression of p53T18A, p53T18D and p53D21A in p53/Mdm-2-double null cells exhibited no discernible differences in p21 expression. Cell proliferation was also significantly curtailed in p53-null cells transfected with p53T18D/S20D relative to cells transfected with wt p53. We conclude the irradiation-induced phosphorylation of p53 at Thr18 and Ser20 alters the α-helical conformation of its transactivation domain. Altered conformation reduces direct interaction with the transrepressor Mdm-2, enhancing indirect recruitment of the basal transcription factor TAFII31, facilitating sequence-specific transactivation function resulting in proliferative arrest. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selenium has been increasingly recognized as an essential element in biology and medicine. Its biochemistry resembles that of sulfur, yet differs from it by virtue of both redox potentials and stabilities of its oxidation states. Selenium can substitute for the more ubiquitous sulfur of cysteine and as such plays an important role in more than a dozen selenoproteins. We have chosen to examine zinc–sulfur centers as possible targets of selenium redox biochemistry. Selenium compounds release zinc from zinc/thiolate-coordination environments, thereby affecting the cellular thiol redox state and the distribution of zinc and likely of other metal ions. Aromatic selenium compounds are excellent spectroscopic probes of the otherwise relatively unstable functional selenium groups. Zinc-coordinated thiolates, e.g., metallothionein (MT), and uncoordinated thiolates, e.g., glutathione, react with benzeneseleninic acid (oxidation state +2), benzeneselenenyl chloride (oxidation state 0) and selenocystamine (oxidation state −1). Benzeneseleninic acid and benzeneselenenyl chloride react very rapidly with MT and titrate substoichiometrically and with a 1:1 stoichiometry, respectively. Selenium compounds also catalyze the release of zinc from MT in peroxidation and thiol/disulfide-interchange reactions. The selenoenzyme glutathione peroxidase catalytically oxidizes MT and releases zinc in the presence of t-butyl hydroperoxide, suggesting that this type of redox chemistry may be employed in biology for the control of metal metabolism. Moreover, selenium compounds are likely targets for zinc/thiolate coordination centers in vivo, because the reactions are only partially suppressed by excess glutathione. This specificity and the potential to undergo catalytic reactions at low concentrations suggests that zinc release is a significant aspect of the therapeutic antioxidant actions of selenium compounds in antiinflammatory and anticarcinogenic agents.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim was to investigate the roles of proline residues in extracellular loop 2 (P172, P183, P188 and P209) and transmembrane domains 2, 5, 11 and 12 (P108, P270, P526, P551, P552 and P570) in determining noradrenaline transporter (NET) expression and function. Mutants of human NET with these residues mutated to alanine were pharmacologically characterized. Mutation of P108, P270 and P526 disrupted cell surface expression, from [H-3]nisoxetine binding and confocal microscopy data. Mutations of P526, P551 and P570 reduced transporter turnover (V-max of [H-3]noradrenaline uptake/B-max of [H-3]nisoxetine binding) by 1.5-1.7-fold compared with wild-type NET, so these residues might be involved in conformational changes associated with substrate translocation. Conversely, mutations of P172, P183, P188 and P209 increased V-max/B-max by 2-3-fold compared with wild-type, indicating that the presence of these proline residues limits turnover of the NET. The mutations had few effects on apparent affinities of substrates or affinities of inhibitors, except decreases in inhibitor affinities after mutations of the P270 and P570 residues, and increases after mutation of the P526 residue. Hence, proline residues in extracellular loop 2 and in transmembrane domains have a range of roles in determining expression and function of the NET.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel member of the human relaxin subclass of the insulin superfamily was recently discovered during a genomics database search and named relaxin-3. Like human relaxin-1 and relaxin-2, relaxin-3 is predicted to consist of a two-chain structure and three disulfide bonds in a disposition identical to that of insulin. To undertake detailed biophysical and biological characterization of the peptide, its chemical synthesis was undertaken. In contrast to human relaxin-1 and relaxin-2, however, relaxin-3 could not be successfully prepared by simple combination of the individual chains, thus necessitating recourse to the use of a regioselective disulfide bond formation strategy. Solid phase synthesis of the separate, selectively S-protected A and B chains followed by their purification and the subsequent stepwise formation of each of the three disulfides led to the successful acquisition of human relaxin-3. Comprehensive chemical characterization confirmed both the correct chain orientation and the integrity of the synthetic product. Relaxin-3 was found to bind to and activate native relaxin receptors in vitro and stimulate water drinking through central relaxin receptors in vivo. Recent studies have demonstrated that relaxin-3 will bind to and activate human LGR7, but not LGR8, in vitro. Secondary structural analysis showed it to adopt a less ordered confirmation than either relaxin-1 or relaxin-2, reflecting the presence in the former of a greater percentage of nonhelical forming amino acids. NMR spectroscopy and simulated annealing calculations were used to determine the three-dimensional structure of relaxin-3 and to identify key structural differences between the human relaxins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Receptor-tyrosine kinases (RTKs) are membrane bound receptors characterized by their intrinsic kinase activity. RTK activities play an essential role in several human diseases, including cancer, diabetes and neurodegenerative diseases. RTK activities have been regulated by the expression or silencing of several genes as well as by the utilization of small molecules. Ras Interference 1 (Rin1) is a multifunctional protein that becomes associated with activated RTKs upon ligand stimulation. Rin1 plays a key role in receptor internalization and in signal transduction via activation of Rab5 and association with active form of Ras. This study has two main objectives: (1) It determines the role of Rin1 in the regulation of several RTKs focusing on insulin receptor. This was accomplished by studying the Rin1-insulin receptor interaction using a variety of biochemical and morphological assays. This study shows a novel interaction between the insulin receptor and Rin1 through the Vps9 domain. Two more RTKs (epidermal growth factor receptor and nerve growth factor receptor) also interacted with the SH2 domain of Rin1. The effect of the Rin1-RTK interaction on the activation of both Rab5 and Ras was also studied during receptor internalization and intracellular signaling. Finally, the role of Rin1 was examined in two differentiation processes (adipogenesis and neurogenesis). Rin1 showed a strong inhibitory effect on 3T3-L1 preadipocyte differentiation but it seems to show a modest effect in PC12 neurite outgrowth. These data indicate a selective function and specific interaction of Rin1 toward RTKs. (2) It examines the role of the small molecule Dehydroleucodine (DhL) on several key signaling molecules during adipogenesis. This was accomplished by studying the differentiation of 3T3-L1 preadipocytes exposed to different concentrations of DhL in different days of the adipocyte formation process. The results indicate that DhL selectively blocked adipocyte formation, as well as the expression of PPARγ, and C/EBP&agr;. However, DhL treatment did not affect Rin1 or Rab5 expression and their activities. Taken together, the data indicate a potential molecular mechanism by which proteins or small molecules regulate selective and specific RTK intracellular membrane trafficking and signaling during cell growth and differentiation in normal and pathological conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article attempts to explore the concept of scientific community at the macro-national level in the context of Iran. Institutionalisation of science and its professional growth has been constrained by several factors. The article first conceptualises the notion of science community as found in the literature in the context of Iran, and attempts to map through some indicators. The main focus, however, lies in mapping some institutional problems through empirical research. This was undertaken in 2002–04 in order to analyse the structure of the scientific community in Iran in the ‘exact sciences’ (mathematics, physics, chemistry, biology and earth sciences). The empirical work was done in two complementary perspectives: through a questionnaire and statistical analysis of it, and through semistructured interviews with the researchers. There are number of problems confronting scientists in Iran. Facilities provided by institutions is one of the major problems of research. Another is the tenuous cooperation among scientists. This is reported by most of the researchers, who deplore the lack of cooperation among their group. Relationships are mostly with the Ph.D. students and only marginally with colleagues. Our research shows that the more brilliant the scientists, the more frustrated they are from scientific institutions in Iran. Medium-range researchers seem to be much happier about the scientific institution to which they belong than the brighter scholars. The scientific institutions in Iran seem to be built for the needs of the former rather than the latter. These institutions seem not to play a positive role in the case of the best scientists. On the whole, many ingredients of the scientific community, at least at its inception, are present among Iranian scientists: the strong desire for scientific achievement in spite of personal, institutional and economic problems.