893 resultados para Biogeography, Bioregions, Subregion, Statistical Modelling, GIS, Finite Mixture Models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a state-of-the-art application of smoothing for dependent bivariate binomial spatial data to Loa loa prevalence mapping in West Africa. This application is special because it starts with the non-spatial calibration of survey instruments, continues with the spatial model building and assessment and ends with robust, tested software that will be used by the field scientists of the World Health Organization for online prevalence map updating. From a statistical perspective several important methodological issues were addressed: (a) building spatial models that are complex enough to capture the structure of the data but remain computationally usable; (b)reducing the computational burden in the handling of very large covariate data sets; (c) devising methods for comparing spatial prediction methods for a given exceedance policy threshold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

STUDY DESIGN: The biomechanics of vertebral bodies augmented with real distributions of cement were investigated using nonlinear finite element (FE) analysis. OBJECTIVES: To compare stiffness, strength, and stress transfer of augmented versus nonaugmented osteoporotic vertebral bodies under compressive loading. Specifically, to examine how cement distribution, volume, and compliance affect these biomechanical variables. SUMMARY OF BACKGROUND DATA: Previous FE studies suggested that vertebroplasty might alter vertebral stress transfer, leading to adjacent vertebral failure. However, no FE study so far accounted for real cement distributions and bone damage accumulation. METHODS: Twelve vertebral bodies scanned with high-resolution pQCT and tested in compression were augmented with various volumes of cements and scanned again. Nonaugmented and augmented pQCT datasets were converted to FE models, with bone properties modeled with an elastic, plastic and damage constitutive law that was previously calibrated for the nonaugmented models. The cement-bone composite was modeled with a rule of mixture. The nonaugmented and augmented FE models were subjected to compression and their stiffness, strength, and stress map calculated for different cement compliances. RESULTS: Cement distribution dominated the stiffening and strengthening effects of augmentation. Models with cement connecting either the superior or inferior endplate (S/I fillings) were only up to 2 times stiffer than the nonaugmented models with minimal strengthening, whereas those with cement connecting both endplates (S + I fillings) were 1 to 8 times stiffer and 1 to 12 times stronger. Stress increases above and below the cement, which was higher for the S + I cases and was significantly reduced by increasing cement compliance. CONCLUSION: The developed FE approach, which accounts for real cement distributions and bone damage accumulation, provides a refined insight into the mechanics of augmented vertebral bodies. In particular, augmentation with compliant cement bridging both endplates would reduce stress transfer while providing sufficient strengthening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stochastic models for three-dimensional particles have many applications in applied sciences. Lévy–based particle models are a flexible approach to particle modelling. The structure of the random particles is given by a kernel smoothing of a Lévy basis. The models are easy to simulate but statistical inference procedures have not yet received much attention in the literature. The kernel is not always identifiable and we suggest one approach to remedy this problem. We propose a method to draw inference about the kernel from data often used in local stereology and study the performance of our approach in a simulation study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear morphometry (NM) uses image analysis to measure features of the cell nucleus which are classified as: bulk properties, shape or form, and DNA distribution. Studies have used these measurements as diagnostic and prognostic indicators of disease with inconclusive results. The distributional properties of these variables have not been systematically investigated although much of the medical data exhibit nonnormal distributions. Measurements are done on several hundred cells per patient so summary measurements reflecting the underlying distribution are needed.^ Distributional characteristics of 34 NM variables from prostate cancer cells were investigated using graphical and analytical techniques. Cells per sample ranged from 52 to 458. A small sample of patients with benign prostatic hyperplasia (BPH), representing non-cancer cells, was used for general comparison with the cancer cells.^ Data transformations such as log, square root and 1/x did not yield normality as measured by the Shapiro-Wilks test for normality. A modulus transformation, used for distributions having abnormal kurtosis values, also did not produce normality.^ Kernel density histograms of the 34 variables exhibited non-normality and 18 variables also exhibited bimodality. A bimodality coefficient was calculated and 3 variables: DNA concentration, shape and elongation, showed the strongest evidence of bimodality and were studied further.^ Two analytical approaches were used to obtain a summary measure for each variable for each patient: cluster analysis to determine significant clusters and a mixture model analysis using a two component model having a Gaussian distribution with equal variances. The mixture component parameters were used to bootstrap the log likelihood ratio to determine the significant number of components, 1 or 2. These summary measures were used as predictors of disease severity in several proportional odds logistic regression models. The disease severity scale had 5 levels and was constructed of 3 components: extracapsulary penetration (ECP), lymph node involvement (LN+) and seminal vesicle involvement (SV+) which represent surrogate measures of prognosis. The summary measures were not strong predictors of disease severity. There was some indication from the mixture model results that there were changes in mean levels and proportions of the components in the lower severity levels. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study pathwise invariances and degeneracies of random fields with motivating applications in Gaussian process modelling. The key idea is that a number of structural properties one may wish to impose a priori on functions boil down to degeneracy properties under well-chosen linear operators. We first show in a second order set-up that almost sure degeneracy of random field paths under some class of linear operators defined in terms of signed measures can be controlled through the two first moments. A special focus is then put on the Gaussian case, where these results are revisited and extended to further linear operators thanks to state-of-the-art representations. Several degeneracy properties are tackled, including random fields with symmetric paths, centred paths, harmonic paths, or sparse paths. The proposed approach delivers a number of promising results and perspectives in Gaussian process modelling. In a first numerical experiment, it is shown that dedicated kernels can be used to infer an axis of symmetry. Our second numerical experiment deals with conditional simulations of a solution to the heat equation, and it is found that adapted kernels notably enable improved predictions of non-linear functionals of the field such as its maximum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient and reliable automated model that can map physical Soil and Water Conservation (SWC) structures on cultivated land was developed using very high spatial resolution imagery obtained from Google Earth and ArcGIS, ERDAS IMAGINE, and SDC Morphology Toolbox for MATLAB and statistical techniques. The model was developed using the following procedures: (1) a high-pass spatial filter algorithm was applied to detect linear features, (2) morphological processing was used to remove unwanted linear features, (3) the raster format was vectorized, (4) the vectorized linear features were split per hectare (ha) and each line was then classified according to its compass direction, and (5) the sum of all vector lengths per class of direction per ha was calculated. Finally, the direction class with the greatest length was selected from each ha to predict the physical SWC structures. The model was calibrated and validated on the Ethiopian Highlands. The model correctly mapped 80% of the existing structures. The developed model was then tested at different sites with different topography. The results show that the developed model is feasible for automated mapping of physical SWC structures. Therefore, the model is useful for predicting and mapping physical SWC structures areas across diverse areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finite element (FE) analysis is an important computational tool in biomechanics. However, its adoption into clinical practice has been hampered by its computational complexity and required high technical competences for clinicians. In this paper we propose a supervised learning approach to predict the outcome of the FE analysis. We demonstrate our approach on clinical CT and X-ray femur images for FE predictions ( FEP), with features extracted, respectively, from a statistical shape model and from 2D-based morphometric and density information. Using leave-one-out experiments and sensitivity analysis, comprising a database of 89 clinical cases, our method is capable of predicting the distribution of stress values for a walking loading condition with an average correlation coefficient of 0.984 and 0.976, for CT and X-ray images, respectively. These findings suggest that supervised learning approaches have the potential to leverage the clinical integration of mechanical simulations for the treatment of musculoskeletal conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assemblages of organic-walled dinoflagellate cysts (dinocysts) from 116 marine surface samples have been analysed to assess the relationship between the spatial distribution of dinocysts and modern local environmental conditions [e.g. sea surface temperature (SST), sea surface salinity (SSS), productivity] in the eastern Indian Ocean. Results from the percentage analysis and statistical methods such as multivariate ordination analysis and end-member modelling, indicate the existence of three distinct environmental and oceanographic regions in the study area. Region 1 is located in western and eastern Indonesia and controlled by high SSTs and a low nutrient content of the surface waters. The Indonesian Throughflow (ITF) region (Region 2) is dominated by heterotrophic dinocyst species reflecting the region's high productivity. Region 3 is encompassing the area offshore north-west and west Australia which is characterised by the water masses of the Leeuwin Current, a saline and nutrient depleted southward current featuring energetic eddies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reconstruction of ocean history employs a large variety of methods with origins in the biological, chemical, and physical sciences, and uses modern statistical techniques for the interpretation of extensive and complex data sets. Various sediment properties deliver useful information for reconstructing environmental parameters. Those properties that have a close relationship to environmental parameters are called ''proxy variables'' (''proxies'' for short). Proxies are measurable descriptors for desired (but unobservable) variables. Surface water temperature is probably the most important parameter for describing the conditions of past oceans and is crucial for climate modelling. Proxies for temperature are: abundance of microfossils dwelling in surface waters, oxygen isotope composition of planktic foraminifers, the ratio of magnesium or strontium to calcium in calcareous shells or the ratio of certain organic molecules (e.g. alkenones produced by coccolithophorids). Surface water salinity, which is important in modelling of ocean circulation, is much more difficult to reconstruct. At present there is no established method for a direct determination of this parameter. Measurements associated with the paleochemistry of bottom waters to reconstruct bottom water age and flow are made on benthic foraminifers, ostracodes, and deep-sea corals. Important geochemical tracers are d13C and Cd/Ca ratios. When using benthic foraminifers, knowledge of the sediment depth habitat of species is crucial. Reconstructions of productivity patterns are of great interest because of important links to current patterns, mixing of water masses, wind, the global carbon cycle, and biogeography. Productivity is reflected in the flux of carbon into the sediment. There are a number of fluxes other than those of organic carbon that can be useful in assessing productivity fluctuations. Among others, carbonate and opal flux have been used, as well as particulate barite. Furthermore, microfossil assemblages contain clues to the intensity of production as some species occur preferentially in high-productivity regions while others avoid these. One marker for the fertility of sub-surface waters (that is, nutrient availability) is the carbon isotope ratio within that water (13C/12C, expressed as d13C). Carbon isotope ratios in today's ocean are negatively correlated with nitrate and phosphate contents. Another tracer of phosphate content in ocean waters is the Cd/Ca ratio. The correlation between this ratio and phosphate concentrations is quite well documented. A rather new development to obtain clues on ocean fertility (nitrate utilization) is the analysis of the 15N/14N ratio in organic matter. The fractionation dynamics are analogous to those of carbon isotopes. These various ratios are captured within the organisms growing within the tagged water. A number of reconstructions of the partial pressure of CO2 have been attempted using d13C differences between planktic and benthic foraminifers and d13C values of bulk organic material or individual organic components. To define the carbon system in sea water, two elements of the system have to be known in addition to temperature. These can be any combination of total CO2 , alkalinity, or pH. To reconstruct pH, the boron isotope composition of carbonates has been used. Ba patterns have been used to infer the distribution of alkalinity in past oceans. Information relating to atmospheric circulationand climate is transported to the ocean by wind or rivers, in the form of minerals or as plant andanimal remains. The most useful tracers in this respect are silt-sized particles and pollen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The statistical distributions of different software properties have been thoroughly studied in the past, including software size, complexity and the number of defects. In the case of object-oriented systems, these distributions have been found to obey a power law, a common statistical distribution also found in many other fields. However, we have found that for some statistical properties, the behavior does not entirely follow a power law, but a mixture between a lognormal and a power law distribution. Our study is based on the Qualitas Corpus, a large compendium of diverse Java-based software projects. We have measured the Chidamber and Kemerer metrics suite for every file of every Java project in the corpus. Our results show that the range of high values for the different metrics follows a power law distribution, whereas the rest of the range follows a lognormal distribution. This is a pattern typical of so-called double Pareto distributions, also found in empirical studies for other software properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La relación entre la estructura urbana y la movilidad ha sido estudiada desde hace más de 70 años. El entorno urbano incluye múltiples dimensiones como por ejemplo: la estructura urbana, los usos de suelo, la distribución de instalaciones diversas (comercios, escuelas y zonas de restauración, parking, etc.). Al realizar una revisión de la literatura existente en este contexto, se encuentran distintos análisis, metodologías, escalas geográficas y dimensiones, tanto de la movilidad como de la estructura urbana. En este sentido, se trata de una relación muy estudiada pero muy compleja, sobre la que no existe hasta el momento un consenso sobre qué dimensión del entorno urbano influye sobre qué dimensión de la movilidad, y cuál es la manera apropiada de representar esta relación. Con el propósito de contestar estas preguntas investigación, la presente tesis tiene los siguientes objetivos generales: (1) Contribuir al mejor entendimiento de la compleja relación estructura urbana y movilidad. y (2) Entender el rol de los atributos latentes en la relación entorno urbano y movilidad. El objetivo específico de la tesis es analizar la influencia del entorno urbano sobre dos dimensiones de la movilidad: número de viajes y tipo de tour. Vista la complejidad de la relación entorno urbano y movilidad, se pretende contribuir al mejor entendimiento de la relación a través de la utilización de 3 escalas geográficas de las variables y del análisis de la influencia de efectos inobservados en la movilidad. Para el análisis se utiliza una base de datos conformada por tres tipos de datos: (1) Una encuesta de movilidad realizada durante los años 2006 y 2007. Se obtuvo un total de 943 encuestas, en 3 barrios de Madrid: Chamberí, Pozuelo y Algete. (2) Información municipal del Instituto Nacional de Estadística: dicha información se encuentra enlazada con los orígenes y destinos de los viajes recogidos en la encuesta. Y (3) Información georeferenciada en Arc-GIS de los hogares participantes en la encuesta: la base de datos contiene información respecto a la estructura de las calles, localización de escuelas, parking, centros médicos y lugares de restauración. Se analizó la correlación entre e intra-grupos y se modelizaron 4 casos de atributos bajo la estructura ordinal logit. Posteriormente se evalúa la auto-selección a través de la estimación conjunta de las elecciones de tipo de barrio y número de viajes. La elección del tipo de barrio consta de 3 alternativas: CBD, Urban y Suburban, según la zona de residencia recogida en las encuestas. Mientras que la elección del número de viajes consta de 4 categorías ordinales: 0 viajes, 1-2 viajes, 3-4 viajes y 5 o más viajes. A partir de la mejor especificación del modelo ordinal logit. Se desarrolló un modelo joint mixed-ordinal conjunto. Los resultados indican que las variables exógenas requieren un análisis exhaustivo de correlaciones con el fin de evitar resultados sesgados. ha determinado que es importante medir los atributos del BE donde se realiza el viaje, pero también la información municipal es muy explicativa de la movilidad individual. Por tanto, la percepción de las zonas de destino a nivel municipal es considerada importante. En el contexto de la Auto-selección (self-selection) es importante modelizar conjuntamente las decisiones. La Auto-selección existe, puesto que los parámetros estimados conjuntamente son significativos. Sin embargo, sólo ciertos atributos del entorno urbano son igualmente importantes sobre la elección de la zona de residencia y frecuencia de viajes. Para analizar la Propensión al Viaje, se desarrolló un modelo híbrido, formado por: una variable latente, un indicador y un modelo de elección discreta. La variable latente se denomina “Propensión al Viaje”, cuyo indicador en ecuación de medida es el número de viajes; la elección discreta es el tipo de tour. El modelo de elección consiste en 5 alternativas, según la jerarquía de actividades establecida en la tesis: HOME, no realiza viajes durante el día de estudio, HWH tour cuya actividad principal es el trabajo o estudios, y no se realizan paradas intermedias; HWHs tour si el individuo reaiza paradas intermedias; HOH tour cuya actividad principal es distinta a trabajo y estudios, y no se realizan paradas intermedias; HOHs donde se realizan paradas intermedias. Para llegar a la mejor especificación del modelo, se realizó un trabajo importante considerando diferentes estructuras de modelos y tres tipos de estimaciones. De tal manera, se obtuvieron parámetros consistentes y eficientes. Los resultados muestran que la modelización de los tours, representa una ventaja sobre la modelización de los viajes, puesto que supera las limitaciones de espacio y tiempo, enlazando los viajes realizados por la misma persona en el día de estudio. La propensión al viaje (PT) existe y es específica para cada tipo de tour. Los parámetros estimados en el modelo híbrido resultaron significativos y distintos para cada alternativa de tipo de tour. Por último, en la tesis se verifica que los modelos híbridos representan una mejora sobre los modelos tradicionales de elección discreta, dando como resultado parámetros consistentes y más robustos. En cuanto a políticas de transporte, se ha demostrado que los atributos del entorno urbano son más importantes que los LOS (Level of Service) en la generación de tours multi-etapas. la presente tesis representa el primer análisis empírico de la relación entre los tipos de tours y la propensión al viaje. El concepto Propensity to Travel ha sido desarrollado exclusivamente para la tesis. Igualmente, el desarrollo de un modelo conjunto RC-Number of trips basado en tres escalas de medida representa innovación en cuanto a la comparación de las escalas geográficas, que no había sido hecha en la modelización de la self-selection. The relationship between built environment (BE) and travel behaviour (TB) has been studied in a number of cases, using several methods - aggregate and disaggregate approaches - and different focuses – trip frequency, automobile use, and vehicle miles travelled and so on. Definitely, travel is generated by the need to undertake activities and obtain services, and there is a general consensus that urban components affect TB. However researches are still needed to better understand which components of the travel behaviour are affected most and by which of the urban components. In order to fill the gap in the research, the present dissertation faced two main objectives: (1) To contribute to the better understanding of the relationship between travel demand and urban environment. And (2) To develop an econometric model for estimating travel demand with urban environment attributes. With this purpose, the present thesis faced an exhaustive research and computation of land-use variables in order to find the best representation of BE for modelling trip frequency. In particular two empirical analyses are carried out: 1. Estimation of three dimensions of travel demand using dimensions of urban environment. We compare different travel dimensions and geographical scales, and we measure self-selection contribution following the joint models. 2. Develop a hybrid model, integrated latent variable and discrete choice model. The implementation of hybrid models is new in the analysis of land-use and travel behaviour. BE and TB explicitly interact and allow richness information about a specific individual decision process For all empirical analysis is used a data-base from a survey conducted in 2006 and 2007 in Madrid. Spatial attributes describing neighbourhood environment are derived from different data sources: National Institute of Statistics-INE (Administrative: municipality and district) and GIS (circular units). INE provides raw data for such spatial units as: municipality and district. The construction of census units is trivial as the census bureau provides tables that readily define districts and municipalities. The construction of circular units requires us to determine the radius and associate the spatial information to our households. The first empirical part analyzes trip frequency by applying an ordered logit model. In this part is studied the effect of socio-economic, transport and land use characteristics on two travel dimensions: trip frequency and type of tour. In particular the land use is defined in terms of type of neighbourhoods and types of dwellers. Three neighbourhood representations are explored, and described three for constructing neighbourhood attributes. In particular administrative units are examined to represent neighbourhood and circular – unit representation. Ordered logit models are applied, while ordinal logit models are well-known, an intensive work for constructing a spatial attributes was carried out. On the other hand, the second empirical analysis consists of the development of an innovative econometric model that considers a latent variable called “propensity to travel”, and choice model is the choice of type of tour. The first two specifications of ordinal models help to estimate this latent variable. The latent variable is unobserved but the manifestation is called “indicators”, then the probability of choosing an alternative of tour is conditional to the probability of latent variable and type of tour. Since latent variable is unknown we fit the integral over its distribution. Four “sets of best variables” are specified, following the specification obtained from the correlation analysis. The results evidence that the relative importance of SE variables versus BE variables depends on how BE variables are measured. We found that each of these three spatial scales has its intangible qualities and drawbacks. Spatial scales play an important role on predicting travel demand due to the variability in measures at trip origin/destinations within the same administrative unit (municipality, district and so on). Larger units will produce less variation in data; but it does not affect certain variables, such as public transport supply, that are more significant at municipality level. By contrast, land-use measures are more efficient at district level. Self-selection in this context, is weak. Thus, the influence of BE attributes is true. The results of the hybrid model show that unobserved factors affect the choice of tour complexity. The latent variable used in this model is propensity to travel that is explained by socioeconomic aspects and neighbourhood attributes. The results show that neighbourhood attributes have indeed a significant impact on the choice of the type of tours either directly and through the propensity to travel. The propensity to travel has a different impact depending on the structure of each tour and increases the probability of choosing more complex tours, such as tours with many intermediate stops. The integration of choice and latent variable model shows that omitting important perception and attitudes leads to inconsistent estimates. The results also indicate that goodness of fit improves by adding the latent variable in both sequential and simultaneous estimation. There are significant differences in the sensitivity to the latent variable across alternatives. In general, as expected, the hybrid models show a major improvement into the goodness of fit of the model, compared to a classical discrete choice model that does not incorporate latent effects. The integrated model leads to a more detailed analysis of the behavioural process. Summarizing, the effect that built environment characteristics on trip frequency studied is deeply analyzed. In particular we tried to better understand how land use characteristics can be defined and measured and which of these measures do have really an impact on trip frequency. We also tried to test the superiority of HCM on this field. We can concluded that HCM shows a major improvement into the goodness of fit of the model, compared to classical discrete choice model that does not incorporate latent effects. And consequently, the application of HCM shows the importance of LV on the decision of tour complexity. People are more elastic to built environment attributes than level of services. Thus, policy implications must take place to develop more mixed areas, work-places in combination with commercial retails.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RESUMEN La dispersión del amoniaco (NH3) emitido por fuentes agrícolas en medias distancias, y su posterior deposición en el suelo y la vegetación, pueden llevar a la degradación de ecosistemas vulnerables y a la acidificación de los suelos. La deposición de NH3 suele ser mayor junto a la fuente emisora, por lo que los impactos negativos de dichas emisiones son generalmente mayores en esas zonas. Bajo la legislación comunitaria, varios estados miembros emplean modelos de dispersión inversa para estimar los impactos de las emisiones en las proximidades de las zonas naturales de especial conservación. Una revisión reciente de métodos para evaluar impactos de NH3 en distancias medias recomendaba la comparación de diferentes modelos para identificar diferencias importantes entre los métodos empleados por los distintos países de la UE. En base a esta recomendación, esta tesis doctoral compara y evalúa las predicciones de las concentraciones atmosféricas de NH3 de varios modelos bajo condiciones, tanto reales como hipotéticas, que plantean un potencial impacto sobre ecosistemas (incluidos aquellos bajo condiciones de clima Mediterráneo). En este sentido, se procedió además a la comparación y evaluación de varias técnicas de modelización inversa para inferir emisiones de NH3. Finalmente, se ha desarrollado un modelo matemático simple para calcular las concentraciones de NH3 y la velocidad de deposición de NH3 en ecosistemas vulnerables cercanos a una fuente emisora. La comparativa de modelos supuso la evaluación de cuatro modelos de dispersión (ADMS 4.1; AERMOD v07026; OPS-st v3.0.3 y LADD v2010) en un amplio rango de casos hipotéticos (dispersión de NH3 procedente de distintos tipos de fuentes agrícolas de emisión). La menor diferencia entre las concentraciones medias estimadas por los distintos modelos se obtuvo para escenarios simples. La convergencia entre las predicciones de los modelos fue mínima para el escenario relativo a la dispersión de NH3 procedente de un establo ventilado mecánicamente. En este caso, el modelo ADMS predijo concentraciones significativamente menores que los otros modelos. Una explicación de estas diferencias podríamos encontrarla en la interacción de diferentes “penachos” y “capas límite” durante el proceso de parametrización. Los cuatro modelos de dispersión fueron empleados para dos casos reales de dispersión de NH3: una granja de cerdos en Falster (Dinamarca) y otra en Carolina del Norte (EEUU). Las concentraciones medias anuales estimadas por los modelos fueron similares para el caso americano (emisión de granjas ventiladas de forma natural y balsa de purines). La comparación de las predicciones de los modelos con concentraciones medias anuales medidas in situ, así como la aplicación de los criterios establecidos para la aceptación estadística de los modelos, permitió concluir que los cuatro modelos se comportaron aceptablemente para este escenario. No ocurrió lo mismo en el caso danés (nave ventilada mecánicamente), en donde el modelo LADD no dio buenos resultados debido a la ausencia de procesos de “sobreelevacion de penacho” (plume-rise). Los modelos de dispersión dan a menudo pobres resultados en condiciones de baja velocidad de viento debido a que la teoría de dispersión en la que se basan no es aplicable en estas condiciones. En situaciones de frecuente descenso en la velocidad del viento, la actual guía de modelización propone usar un modelo que sea eficaz bajo dichas condiciones, máxime cuando se realice una valoración que tenga como objeto establecer una política de regularización. Esto puede no ser siempre posible debido a datos meteorológicos insuficientes, en cuyo caso la única opción sería utilizar un modelo más común, como la versión avanzada de los modelos Gausianos ADMS o AERMOD. Con el objetivo de evaluar la idoneidad de estos modelos para condiciones de bajas velocidades de viento, ambos modelos fueron utilizados en un caso con condiciones Mediterráneas. Lo que supone sucesivos periodos de baja velocidad del viento. El estudio se centró en la dispersión de NH3 procedente de una granja de cerdos en Segovia (España central). Para ello la concentración de NH3 media mensual fue medida en 21 localizaciones en torno a la granja. Se realizaron también medidas de concentración de alta resolución en una única localización durante una campaña de una semana. En este caso, se evaluaron dos estrategias para mejorar la respuesta del modelo ante bajas velocidades del viento. La primera se basó en “no zero wind” (NZW), que sustituyó periodos de calma con el mínimo límite de velocidad del viento y “accumulated calm emissions” (ACE), que forzaban al modelo a calcular las emisiones totales en un periodo de calma y la siguiente hora de no-calma. Debido a las importantes incertidumbres en los datos de entrada del modelo (inputs) (tasa de emisión de NH3, velocidad de salida de la fuente, parámetros de la capa límite, etc.), se utilizó el mismo caso para evaluar la incertidumbre en la predicción del modelo y valorar como dicha incertidumbre puede ser considerada en evaluaciones del modelo. Un modelo dinámico de emisión, modificado para el caso de clima Mediterráneo, fue empleado para estimar la variabilidad temporal en las emisiones de NH3. Así mismo, se realizó una comparativa utilizando las emisiones dinámicas y la tasa constante de emisión. La incertidumbre predicha asociada a la incertidumbre de los inputs fue de 67-98% del valor medio para el modelo ADMS y entre 53-83% del valor medio para AERMOD. La mayoría de esta incertidumbre se debió a la incertidumbre del ratio de emisión en la fuente (50%), seguida por la de las condiciones meteorológicas (10-20%) y aquella asociada a las velocidades de salida (5-10%). El modelo AERMOD predijo mayores concentraciones que ADMS y existieron más simulaciones que alcanzaron los criterios de aceptabilidad cuando se compararon las predicciones con las concentraciones medias anuales medidas. Sin embargo, las predicciones del modelo ADMS se correlacionaron espacialmente mejor con las mediciones. El uso de valores dinámicos de emisión estimados mejoró el comportamiento de ADMS, haciendo empeorar el de AERMOD. La aplicación de estrategias destinadas a mejorar el comportamiento de este último tuvo efectos contradictorios similares. Con el objeto de comparar distintas técnicas de modelización inversa, varios modelos (ADMS, LADD y WindTrax) fueron empleados para un caso no agrícola, una colonia de pingüinos en la Antártida. Este caso fue empleado para el estudio debido a que suponía la oportunidad de obtener el primer factor de emisión experimental para una colonia de pingüinos antárticos. Además las condiciones eran propicias desde el punto de vista de la casi total ausencia de concentraciones ambiente (background). Tras el trabajo de modelización existió una concordancia suficiente entre las estimaciones obtenidas por los tres modelos. De este modo se pudo definir un factor de emisión de para la colonia de 1.23 g NH3 por pareja criadora por día (con un rango de incertidumbre de 0.8-2.54 g NH3 por pareja criadora por día). Posteriores aplicaciones de técnicas de modelización inversa para casos agrícolas mostraron también un buen compromiso estadístico entre las emisiones estimadas por los distintos modelos. Con todo ello, es posible concluir que la modelización inversa es una técnica robusta para estimar tasas de emisión de NH3. Modelos de selección (screening) permiten obtener una rápida y aproximada estimación de los impactos medioambientales, siendo una herramienta útil para evaluaciones de impactos en tanto que permite eliminar casos que presentan un riesgo potencial de daño bajo. De esta forma, lo recursos del modelo pueden Resumen (Castellano) destinarse a casos en donde la posibilidad de daño es mayor. El modelo de Cálculo Simple de los Límites de Impacto de Amoniaco (SCAIL) se desarrolló para obtener una estimación de la concentración media de NH3 y de la tasa de deposición seca asociadas a una fuente agrícola. Está técnica de selección, basada en el modelo LADD, fue evaluada y calibrada con diferentes bases de datos y, finalmente, validada utilizando medidas independientes de concentraciones realizadas cerca de las fuentes. En general SCAIL dio buenos resultados de acuerdo a los criterios estadísticos establecidos. Este trabajo ha permitido definir situaciones en las que las concentraciones predichas por modelos de dispersión son similares, frente a otras en las que las predicciones difieren notablemente entre modelos. Algunos modelos nos están diseñados para simular determinados escenarios en tanto que no incluyen procesos relevantes o están más allá de los límites de su aplicabilidad. Un ejemplo es el modelo LADD que no es aplicable en fuentes con velocidad de salida significativa debido a que no incluye una parametrización de sobreelevacion del penacho. La evaluación de un esquema simple combinando la sobreelevacion del penacho y una turbulencia aumentada en la fuente mejoró el comportamiento del modelo. Sin embargo más pruebas son necesarias para avanzar en este sentido. Incluso modelos que son aplicables y que incluyen los procesos relevantes no siempre dan similares predicciones. Siendo las razones de esto aún desconocidas. Por ejemplo, AERMOD predice mayores concentraciones que ADMS para dispersión de NH3 procedente de naves de ganado ventiladas mecánicamente. Existe evidencia que sugiere que el modelo ADMS infraestima concentraciones en estas situaciones debido a un elevado límite de velocidad de viento. Por el contrario, existen evidencias de que AERMOD sobreestima concentraciones debido a sobreestimaciones a bajas Resumen (Castellano) velocidades de viento. Sin embrago, una modificación simple del pre-procesador meteorológico parece mejorar notablemente el comportamiento del modelo. Es de gran importancia que estas diferencias entre las predicciones de los modelos sean consideradas en los procesos de evaluación regulada por los organismos competentes. Esto puede ser realizado mediante la aplicación del modelo más útil para cada caso o, mejor aún, mediante modelos múltiples o híbridos. ABSTRACT Short-range atmospheric dispersion of ammonia (NH3) emitted by agricultural sources and its subsequent deposition to soil and vegetation can lead to the degradation of sensitive ecosystems and acidification of the soil. Atmospheric concentrations and dry deposition rates of NH3 are generally highest near the emission source and so environmental impacts to sensitive ecosystems are often largest at these locations. Under European legislation, several member states use short-range atmospheric dispersion models to estimate the impact of ammonia emissions on nearby designated nature conservation sites. A recent review of assessment methods for short-range impacts of NH3 recommended an intercomparison of the different models to identify whether there are notable differences to the assessment approaches used in different European countries. Based on this recommendation, this thesis compares and evaluates the atmospheric concentration predictions of several models used in these impact assessments for various real and hypothetical scenarios, including Mediterranean meteorological conditions. In addition, various inverse dispersion modelling techniques for the estimation of NH3 emissions rates are also compared and evaluated and a simple screening model to calculate the NH3 concentration and dry deposition rate at a sensitive ecosystem located close to an NH3 source was developed. The model intercomparison evaluated four atmospheric dispersion models (ADMS 4.1; AERMOD v07026; OPS-st v3.0.3 and LADD v2010) for a range of hypothetical case studies representing the atmospheric dispersion from several agricultural NH3 source types. The best agreement between the mean annual concentration predictions of the models was found for simple scenarios with area and volume sources. The agreement between the predictions of the models was worst for the scenario representing the dispersion from a mechanically ventilated livestock house, for which ADMS predicted significantly smaller concentrations than the other models. The reason for these differences appears to be due to the interaction of different plume-rise and boundary layer parameterisations. All four dispersion models were applied to two real case studies of dispersion of NH3 from pig farms in Falster (Denmark) and North Carolina (USA). The mean annual concentration predictions of the models were similar for the USA case study (emissions from naturally ventilated pig houses and a slurry lagoon). The comparison of model predictions with mean annual measured concentrations and the application of established statistical model acceptability criteria concluded that all four models performed acceptably for this case study. This was not the case for the Danish case study (mechanically ventilated pig house) for which the LADD model did not perform acceptably due to the lack of plume-rise processes in the model. Regulatory dispersion models often perform poorly in low wind speed conditions due to the model dispersion theory being inapplicable at low wind speeds. For situations with frequent low wind speed periods, current modelling guidance for regulatory assessments is to use a model that can handle these conditions in an acceptable way. This may not always be possible due to insufficient meteorological data and so the only option may be to carry out the assessment using a more common regulatory model, such as the advanced Gaussian models ADMS or AERMOD. In order to assess the suitability of these models for low wind conditions, they were applied to a Mediterranean case study that included many periods of low wind speed. The case study was the dispersion of NH3 emitted by a pig farm in Segovia, Central Spain, for which mean monthly atmospheric NH3 concentration measurements were made at 21 locations surrounding the farm as well as high-temporal-resolution concentration measurements at one location during a one-week campaign. Two strategies to improve the model performance for low wind speed conditions were tested. These were ‘no zero wind’ (NZW), which replaced calm periods with the minimum threshold wind speed of the model and ‘accumulated calm emissions’ (ACE), which forced the model to emit the total emissions during a calm period during the first subsequent non-calm hour. Due to large uncertainties in the model input data (NH3 emission rates, source exit velocities, boundary layer parameters), the case study was also used to assess model prediction uncertainty and assess how this uncertainty can be taken into account in model evaluations. A dynamic emission model modified for the Mediterranean climate was used to estimate the temporal variability in NH3 emission rates and a comparison was made between the simulations using the dynamic emissions and a constant emission rate. Prediction uncertainty due to model input uncertainty was 67-98% of the mean value for ADMS and between 53-83% of the mean value for AERMOD. Most of this uncertainty was due to source emission rate uncertainty (~50%), followed by uncertainty in the meteorological conditions (~10-20%) and uncertainty in exit velocities (~5-10%). AERMOD predicted higher concentrations than ADMS and more of the simulations met the model acceptability criteria when compared with the annual mean measured concentrations. However, the ADMS predictions were better correlated spatially with the measurements. The use of dynamic emission estimates improved the performance of ADMS but worsened the performance of AERMOD and the application of strategies to improved model performance had similar contradictory effects. In order to compare different inverse modelling techniques, several models (ADMS, LADD and WindTrax) were applied to a non-agricultural case study of a penguin colony in Antarctica. This case study was used since it gave the opportunity to provide the first experimentally-derived emission factor for an Antarctic penguin colony and also had the advantage of negligible background concentrations. There was sufficient agreement between the emission estimates obtained from the three models to define an emission factor for the penguin colony (1.23 g NH3 per breeding pair per day with an uncertainty range of 0.8-2.54 g NH3 per breeding pair per day). This emission estimate compared favourably to the value obtained using a simple micrometeorological technique (aerodynamic gradient) of 0.98 g ammonia per breeding pair per day (95% confidence interval: 0.2-2.4 g ammonia per breeding pair per day). Further application of the inverse modelling techniques for a range of agricultural case studies also demonstrated good agreement between the emission estimates. It is concluded, therefore, that inverse dispersion modelling is a robust technique for estimating NH3 emission rates. Screening models that can provide a quick and approximate estimate of environmental impacts are a useful tool for impact assessments because they can be used to filter out cases that potentially have a minimal environmental impact allowing resources to be focussed on more potentially damaging cases. The Simple Calculation of Ammonia Impact Limits (SCAIL) model was developed as a screening model to provide an estimate of the mean NH3 concentration and dry deposition rate downwind of an agricultural source. This screening tool, based on the LADD model, was evaluated and calibrated with several experimental datasets and then validated using independent concentration measurements made near sources. Overall SCAIL performed acceptably according to established statistical criteria. This work has identified situations where the concentration predictions of dispersion models are similar and other situations where the predictions are significantly different. Some models are simply not designed to simulate certain scenarios since they do not include the relevant processes or are beyond the limits of their applicability. An example is the LADD model that is not applicable to sources with significant exit velocity since the model does not include a plume-rise parameterisation. The testing of a simple scheme combining a momentum-driven plume rise and increased turbulence at the source improved model performance, but more testing is required. Even models that are applicable and include the relevant process do not always give similar predictions and the reasons for this need to be investigated. AERMOD for example predicts higher concentrations than ADMS for dispersion from mechanically ventilated livestock housing. There is evidence to suggest that ADMS underestimates concentrations in these situations due to a high wind speed threshold. Conversely, there is also evidence that AERMOD overestimates concentrations in these situations due to overestimation at low wind speeds. However, a simple modification to the meteorological pre-processor appears to improve the performance of the model. It is important that these differences between the predictions of these models are taken into account in regulatory assessments. This can be done by applying the most suitable model for the assessment in question or, better still, using multiple or hybrid models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analysis of river flow using hydraulic modelling and its implications in derived environ-mental applications are inextricably connected with the way in which the river boundary shape is represented. This relationship is scale-dependent upon the modelling resolution which in turn determines the importance of a subscale performance of the model and the way subscale (surface and flow) processes are parameterised. Commonly, the subscale behaviour of the model relies upon a roughness parameterisation whose meaning depends on the dimensionality of the hydraulic model and the resolution of the topographic represen¬tation scale. This latter is, in turn, dependent on the resolution of the computational mesh as well as on the detail of measured topographic data. Flow results are affected by this interactions between scale and subscale parameterisation according to the dimensionality approach. The aim of this dissertation is the evaluation of these interactions upon hy¬draulic modelling results. Current high resolution topographic source availability induce this research which is tackled using a suitable roughness approach according to each di¬mensionality with the purpose of the interaction assessment. A 1D HEC-RAS model, a 2D raster-based diffusion-wave model with a scale-dependent distributed roughness parame-terisation and a 3D finite volume scheme with a porosity algorithm approach to incorporate complex topography have been used. Different topographic sources are assessed using a 1D scheme. LiDAR data are used to isolate the mesh resolution from the topographic content of the DEM effects upon 2D and 3D flow results. A distributed roughness parameterisation, using a roughness height approach dependent upon both mesh resolution and topographic content is developed and evaluated for the 2D scheme. Grain-size data and fractal methods are used for the reconstruction of topography with microscale information, required for some applications but not easily available. Sensitivity of hydraulic parameters to this topographic parameterisation is evaluated in a 3D scheme at different mesh resolu¬tions. Finally, the structural variability of simulated flow is analysed and related to scale interactions. Model simulations demonstrate (i) the importance of the topographic source in a 1D models; (ii) the mesh resolution approach is dominant in 2D and 3D simulations whereas in a 1D model the topographic source and even the roughness parameterisation impacts are more critical; (iii) the increment of the sensitivity to roughness parameterisa-tion in 1D and 2D schemes with detailed topographic sources and finer mesh resolutions; and (iv) the topographic content and microtopography impact throughout the vertical profile of computed 3D velocity in a depth-dependent way, whereas 2D results are not affected by topographic content variations. Finally, the spatial analysis shows that the mesh resolution controls high resolution model scale results, roughness parameterisation control 2D simulation results for a constant mesh resolution; and topographic content and micro-topography variations impacts upon the organisation of flow results depth-dependently in a 3D scheme. Resumen La topografía juega un papel fundamental en la distribución del agua y la energía en los paisajes naturales (Beven and Kirkby 1979; Wood et al. 1997). La simulación hidráulica combinada con métodos de medición del terreno por teledetección constituyen una poderosa herramienta de investigación en la comprensión del comportamiento de los flujos de agua debido a la variabilidad de la superficie sobre la que fluye. La representación e incorporación de la topografía en el esquema hidráulico tiene una importancia crucial en los resultados y determinan el desarrollo de sus aplicaciones al campo medioambiental. Cualquier simulación es una simplificación de un proceso del mundo real, y por tanto el grado de simplificación determinará el significado de los resultados simulados. Este razonamiento es particularmente difícil de trasladar a la simulación hidráulica donde aspectos de la escala tan diferentes como la escala de los procesos de flujo y de representación del contorno son considerados conjuntamente incluso en fases de parametrización (e.g. parametrización de la rugosidad). Por una parte, esto es debido a que las decisiones de escala vienen condicionadas entre ellas (e.g. la dimensionalidad del modelo condiciona la escala de representación del contorno) y por tanto interaccionan en sus resultados estrechamente. Y por otra parte, debido a los altos requerimientos numéricos y computacionales de una representación explícita de alta resolución de los procesos de flujo y discretización de la malla. Además, previo a la modelización hidráulica, la superficie del terreno sobre la que el agua fluye debe ser modelizada y por tanto presenta su propia escala de representación, que a su vez dependerá de la escala de los datos topográficos medidos con que se elabora el modelo. En última instancia, esta topografía es la que determina el comportamiento espacial del flujo. Por tanto, la escala de la topografía en sus fases de medición y modelización (resolución de los datos y representación topográfica) previas a su incorporación en el modelo hidráulico producirá a su vez un impacto que se acumulará al impacto global resultante debido a la escala computacional del modelo hidráulico y su dimensión. La comprensión de las interacciones entre las complejas geometrías del contorno y la estructura del flujo utilizando la modelización hidráulica depende de las escalas consideradas en la simplificación de los procesos hidráulicos y del terreno (dimensión del modelo, tamaño de escala computacional y escala de los datos topográficos). La naturaleza de la aplicación del modelo hidráulico (e.g. habitat físico, análisis de riesgo de inundaciones, transporte de sedimentos) determina en primer lugar la escala del estudio y por tanto el detalle de los procesos a simular en el modelo (i.e. la dimensionalidad) y, en consecuencia, la escala computacional a la que se realizarán los cálculos (i.e. resolución computacional). Esta última a su vez determina, el detalle geográfico con que deberá representarse el contorno acorde con la resolución de la malla computacional. La parametrización persigue incorporar en el modelo hidráulico la cuantificación de los procesos y condiciones físicas del sistema natural y por tanto debe incluir no solo aquellos procesos que tienen lugar a la escala de modelización, sino también aquellos que tienen lugar a un nivel subescalar y que deben ser definidos mediante relaciones de escalado con las variables modeladas explícitamente. Dicha parametrización se implementa en la práctica mediante la provisión de datos al modelo, por tanto la escala de los datos geográficos utilizados para parametrizar el modelo no sólo influirá en los resultados, sino también determinará la importancia del comportamiento subescalar del modelo y el modo en que estos procesos deban ser parametrizados (e.g. la variabilidad natural del terreno dentro de la celda de discretización o el flujo en las direcciones laterales y verticales en un modelo unidimensional). En esta tesis, se han utilizado el modelo unidimensional HEC-RAS, (HEC 1998b), un modelo ráster bidimensional de propagación de onda, (Yu 2005) y un esquema tridimensional de volúmenes finitos con un algoritmo de porosidad para incorporar la topografía, (Lane et al. 2004; Hardy et al. 2005). La geometría del contorno viene definida por la escala de representación topográfica (resolución de malla y contenido topográfico), la cual a su vez depende de la escala de la fuente cartográfica. Todos estos factores de escala interaccionan en la respuesta del modelo hidráulico a la topografía. En los últimos años, métodos como el análisis fractal y las técnicas geoestadísticas utilizadas para representar y analizar elementos geográficos (e.g. en la caracterización de superficies (Herzfeld and Overbeck 1999; Butler et al. 2001)), están promoviendo nuevos enfoques en la cuantificación de los efectos de escala (Lam et al. 2004; Atkinson and Tate 2000; Lam et al. 2006) por medio del análisis de la estructura espacial de la variable (e.g. Bishop et al. 2006; Ju et al. 2005; Myint et al. 2004; Weng 2002; Bian and Xie 2004; Southworth et al. 2006; Pozd-nyakova et al. 2005; Kyriakidis and Goodchild 2006). Estos métodos cuantifican tanto el rango de valores de la variable presentes a diferentes escalas como la homogeneidad o heterogeneidad de la variable espacialmente distribuida (Lam et al. 2004). En esta tesis, estas técnicas se han utilizado para analizar el impacto de la topografía sobre la estructura de los resultados hidráulicos simulados. Los datos de teledetección de alta resolución y técnicas GIS también están siendo utilizados para la mejor compresión de los efectos de escala en modelos medioambientales (Marceau 1999; Skidmore 2002; Goodchild 2003) y se utilizan en esta tesis. Esta tesis como corpus de investigación aborda las interacciones de esas escalas en la modelización hidráulica desde un punto de vista global e interrelacionado. Sin embargo, la estructura y el foco principal de los experimentos están relacionados con las nociones espaciales de la escala de representación en relación con una visión global de las interacciones entre escalas. En teoría, la representación topográfica debe caracterizar la superficie sobre la que corre el agua a una adecuada (conforme a la finalidad y dimensión del modelo) escala de discretización, de modo que refleje los procesos de interés. La parametrización de la rugosidad debe de reflejar los efectos de la variabilidad de la superficie a escalas de más detalle que aquellas representadas explícitamente en la malla topográfica (i.e. escala de discretización). Claramente, ambos conceptos están físicamente relacionados por un