863 resultados para Biodiversity hotspot
Resumo:
Numerous studies show that increasing species richness leads to higher ecosystem productivity. This effect is often attributed to more efficient portioning of multiple resources in communities with higher numbers of competing species, indicating the role of resource supply and stoichiometry for biodiversity-ecosystem functioning relationships. Here, we merged theory on ecological stoichiometry with a framework of biodiversity-ecosystem functioning to understand how resource use transfers into primary production. We applied a structural equation model to define patterns of diversity-productivity relationships with respect to available resources. Meta-analysis was used to summarize the findings across ecosystem types ranging from aquatic ecosystems to grasslands and forests. As hypothesized, resource supply increased realized productivity and richness, but we found significant differences between ecosystems and study types. Increased richness was associated with increased productivity, although this effect was not seen in experiments. More even communities had lower productivity, indicating that biomass production is often maintained by a few dominant species, and reduced dominance generally reduced ecosystem productivity. This synthesis, which integrates observational and experimental studies in a variety of ecosystems and geographical regions, exposes common patterns and differences in biodiversity-functioning relationships, and increases the mechanistic understanding of changes in ecosystems productivity.
Resumo:
Ecosystem engineers that increase habitat complexity are keystone species in marine systems, increasing shelter and niche availability, and therefore biodiversity. For example, kelp holdfasts form intricate structures and host the largest number of organisms in kelp ecosystems. However, methods that quantify 3D habitat complexity have only seldom been used in marine habitats, and never in kelp holdfast communities. This study investigated the role of kelp holdfasts (Laminaria hyperborea) in supporting benthic faunal biodiversity. Computer-aided tomography (CT-) scanning was used to quantify the three-dimensional geometrical complexity of holdfasts, including volume, surface area and surface fractal dimension (FD). Additionally, the number of haptera, number of haptera per unit of volume, and age of kelps were estimated. These measurements were compared to faunal biodiversity and community structure, using partial least-squares regression and multivariate ordination. Holdfast volume explained most of the variance observed in biodiversity indices, however all other complexity measures also strongly contributed to the variance observed. Multivariate ordinations further revealed that surface area and haptera per unit of volume accounted for the patterns observed in faunal community structure. Using 3D image analysis, this study makes a strong contribution to elucidate quantitative mechanisms underlying the observed relationship between biodiversity and habitat complexity. Furthermore, the potential of CT-scanning as an ecological tool is demonstrated, and a methodology for its use in future similar studies is established. Such spatially resolved imager analysis could help identify structurally complex areas as biodiversity hotspots, and may support the prioritization of areas for conservation.
Resumo:
Ecosystem engineers that increase habitat complexity are keystone species in marine systems, increasing shelter and niche availability, and therefore biodiversity. For example, kelp holdfasts form intricate structures and host the largest number of organisms in kelp ecosystems. However, methods that quantify 3D habitat complexity have only seldom been used in marine habitats, and never in kelp holdfast communities. This study investigated the role of kelp holdfasts (Laminaria hyperborea) in supporting benthic faunal biodiversity. Computer-aided tomography (CT-) scanning was used to quantify the three-dimensional geometrical complexity of holdfasts, including volume, surface area and surface fractal dimension (FD). Additionally, the number of haptera, number of haptera per unit of volume, and age of kelps were estimated. These measurements were compared to faunal biodiversity and community structure, using partial least-squares regression and multivariate ordination. Holdfast volume explained most of the variance observed in biodiversity indices, however all other complexity measures also strongly contributed to the variance observed. Multivariate ordinations further revealed that surface area and haptera per unit of volume accounted for the patterns observed in faunal community structure. Using 3D image analysis, this study makes a strong contribution to elucidate quantitative mechanisms underlying the observed relationship between biodiversity and habitat complexity. Furthermore, the potential of CT-scanning as an ecological tool is demonstrated, and a methodology for its use in future similar studies is established. Such spatially resolved imager analysis could help identify structurally complex areas as biodiversity hotspots, and may support the prioritization of areas for conservation.
Resumo:
The last few decades have seen rapid proliferation of hard artificial structures (e.g., energy infra-structure, aquaculture, coastal defences) in the marine environment: ocean sprawl. The replacement of natural, often sedimentary, substrata with hard substrata has altered the distribution of species, particularly non-indigenous species, and can facilitate the assisted migration of native species at risk from climate change. This has been likened to urbanization as a driver of global biotic homogenization in the marine environment—the process by which species invasions and extinctions increase the genetic, taxonomic, or functional similarity of communities at local, regional, and global scales. Ecological engineering research showed that small-scale engineering interventions can have a significant positive effect on the biodiversity of artificial structures, promoting more diverse and resilient communities on local scales. This knowledge can be applied to the design of multifunctional structures that provide a range of ecosystem services. In coastal regions, hybrid designs can work with nature to combine hard and soft approaches to coastal defence in a more environmentally sensitive manner. The challenge now is to manage ocean sprawl with the dual goal of supporting human populations and activities, simultaneously strengthening ecosystem resilience using an ecosystem- based approach.
Resumo:
Realization that hard coastal infrastructures support lower biodiversity than natural habitats has prompted a wealth of research seeking to identify design enhancements offering ecological benefits. Some studies showed that artificial structures could be modified to increase levels of diversity. Most studies, however, only considered the short-term ecological effects of such modifications, even though reliance on results from short-term studies may lead to serious misjudgements in conservation. In this study, a seven-year experiment examined how the addition of small pits to otherwise featureless seawalls may enhance the stocks of a highly-exploited limpet. Modified areas of the seawall supported enhanced stocks of limpets seven years after the addition of pits. Modified areas of the seawall also supported a community that differed in the abundance of littorinids, barnacles and macroalgae compared to the controls. Responses to different treatments (numbers and size of pits) were species-specific and, while some species responded directly to differences among treatments, others might have responded indirectly via changes in the distribution of competing species. This type of habitat enhancement can have positive long-lasting effects on the ecology of urban seascapes. Understanding of species interactions could be used to develop a rule-based approach to enhance biodiversity.
Resumo:
Realization that hard coastal infrastructures support lower biodiversity than natural habitats has prompted a wealth of research seeking to identify design enhancements offering ecological benefits. Some studies showed that artificial structures could be modified to increase levels of diversity. Most studies, however, only considered the short-term ecological effects of such modifications, even though reliance on results from short-term studies may lead to serious misjudgements in conservation. In this study, a seven-year experiment examined how the addition of small pits to otherwise featureless seawalls may enhance the stocks of a highly-exploited limpet. Modified areas of the seawall supported enhanced stocks of limpets seven years after the addition of pits. Modified areas of the seawall also supported a community that differed in the abundance of littorinids, barnacles and macroalgae compared to the controls. Responses to different treatments (numbers and size of pits) were species-specific and, while some species responded directly to differences among treatments, others might have responded indirectly via changes in the distribution of competing species. This type of habitat enhancement can have positive long-lasting effects on the ecology of urban seascapes. Understanding of species interactions could be used to develop a rule-based approach to enhance biodiversity.
Resumo:
Energy policies around the world are mandating for a progressive increase in renewable energy production. Extensive grassland areas with low productivity and land use limitations have become target areas for sustainable energy production to avoid competition with food production on the limited available arable land resources and minimize further conversion of grassland into intensively managed energy cropping systems or abandonment. However, the high spatio-temporal variability in botanical composition and biochemical parameters is detrimental to reliable assessment of biomass yield and quality regarding anaerobic digestion. In an approach to assess the performance for predicting biomass using a multi-sensor combination including NIRS, ultra-sonic distance measurements and LAI-2000, biweekly sensor measurements were taken on a pure stand of reed canary grass (Phalaris aruninacea), a legume grass mixture and a diversity mixture with thirty-six species in an experimental extensive two cut management system. Different combinations of the sensor response values were used in multiple regression analysis to improve biomass predictions compared to exclusive sensors. Wavelength bands for sensor specific NDVI-type vegetation indices were selected from the hyperspectral data and evaluated for the biomass prediction as exclusive indices and in combination with LAI and ultra-sonic distance measurements. Ultrasonic sward height was the best to predict biomass in single sensor approaches (R² 0.73 – 0.76). The addition of LAI-2000 improved the prediction performance by up to 30% while NIRS barely improved the prediction performance. In an approach to evaluate broad based prediction of biochemical parameters relevant for anaerobic digestion using hyperspectral NIRS, spectroscopic measurements were taken on biomass from the Jena-Experiment plots in 2008 and 2009. Measurements were conducted on different conditions of the biomass including standing sward, hay and silage and different spectroscopic devices to simulate different preparation and measurement conditions along the process chain for biogas production. Best prediction results were acquired for all constituents at laboratory measurement conditions with dried and ground samples on a bench-top NIRS system (RPD > 3) with a coefficient of determination R2 < 0.9. The same biomass was further used in batch fermentation to analyse the impact of species richness and functional group composition on methane yields using whole crop digestion and pressfluid derived by the Integrated generation of solid Fuel and Biogas from Biomass (IFBB) procedure. Although species richness and functional group composition were largely insignificant, the presence of grasses and legumes in the mixtures were most determining factors influencing methane yields in whole crop digestion. High lignocellulose content and a high C/N ratio in grasses may have reduced the digestibility in the first cut material, excess nitrogen may have inhibited methane production in second cut legumes, while batch experiments proved superior specific methane yields of IFBB press fluids and showed that detrimental effects of the parent material were reduced by the technical treatment
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
Ponds are among the most biodiverse freshwater ecosystems, yet face significant threats from removal, habitat degradation and a lack of legislative protection globally. Information regarding the habitat quality and biodiversity of ponds across a range of land uses is vital for the long term conservation and management of ecological resources. In this study we examine the biodiversity and conservation value of macroinvertebrates from 91 lowland ponds across 3 land use types (35 floodplain meadow, 15 arable and 41 urban ponds). A total of 224 macroinvertebrate taxa were recorded across all ponds, with urban ponds and floodplain ponds supporting a greater richness than arable ponds at the landscape scale. However, at the alpha scale, urban ponds supported lower faunal diversity (mean: 22 taxa) than floodplain (mean: 32 taxa) or arable ponds (mean: 30 taxa). Floodplain ponds were found to support taxonomically distinct communities compared to arable and urban ponds. A total of 13 macroinvertebrate taxa with a national conservation designation were recorded across the study area and 12 ponds (11 floodplain and 1 arable pond) supported assemblages of high or very high conservation value. Pond conservation currently relies on the designation of individual ponds based on very high biodiversity or the presence of taxa with specific conservation designations. However, this site specific approach fails to acknowledge the contribution of ponds to freshwater biodiversity at the landscape scale. Ponds are highly appropriate sites outside of protected areas (urban/arable), with which the general public are already familiar, for local and landscape scale conservation of freshwater habitats.
Resumo:
Urbanization is a global process contributing to the loss and fragmentation of natural habitats. Many studies have focused on the biological response of terrestrial taxa and habitats to urbanization. However, little is known regarding the consequences of urbanization on freshwater habitats, especially small lentic systems. In this study we examined aquatic macroinvertebrate diversity (family and species level) and variation in community composition between 240 urban and 782 non-urban ponds distributed across the UK. Contrary to predictions, urban ponds supported similar numbers of invertebrate species and families compared to non-urban ponds. Similar gamma diversity was found between the two groups at both family and species taxonomic levels. The biological communities of urban ponds were markedly different to those of non-urban ponds and the variability in urban pond community composition was greater than that in non-urban ponds, contrary to previous work showing homogenisation of communities in urban areas. Positive spatial autocorrelation was recorded for urban and non-urban ponds at 0-50 km (distance between pond study sites) and negative spatial autocorrelation was observed at 100-150 km, and was stronger in urban ponds in both cases. Ponds do not follow the same ecological patterns as terrestrial and lotic habitats (reduced taxonomic richness) in urban environments; in contrast they support high taxonomic richness and contribute significantly to regional faunal diversity. Individual cities are complex structural mosaics which evolve over long periods of time and are managed in diverse ways, promoting the development of a wide-range of environmental conditions and habitat niches in urban ponds which can promote greater heterogeneity between pond communities at larger scales. Ponds provide an opportunity for managers and environmental regulators to conserve and enhance freshwater biodiversity in urbanized landscapes whilst also facilitating key ecosystem services including storm water storage and water treatment.