976 resultados para Bioactive phosphorus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about the fluxes to and from the ocean during the Cenozoic of phosphorus (P), a limiting nutrient for oceanic primary productivity and organic carbon burial on geologic timescales. Previous studies have concluded that dissolved river fluxes increased worldwide during the Cenozoic and that organic carbon burial decreased relative to calcium carbonate burial and perhaps in absolute terms as well. To examine the apparent contradiction between increased river fluxes of P (assuming P fluxes behave like the others) expected to drive increased organic carbon burial and observations indicating decreased organic carbon burial, we determined P accumulation rates for equatorial Pacific sediments from Ocean Drilling Program leg 138 sites in the eastern equatorial Pacific and leg 130 sites on the Ontong Java Plateau in the western equatorial Pacific. Although there are site specific and depth dependent effects on P accumulation rates, there are important features common to the records at all sites. P accumulation rates declined from 50 to 20 Ma, showed some variability from 20 to 10 Ma, and had a substantial peak from 9 to 3 Ma centered at 5-6 Ma. These changes in P accumulation rates for the equatorial Pacific are equivalent to substantial changes in the P mass balance. However, the pattern resembles neither that of weathering flux indicators (87Sr/86Sr and Ge/Si ratios) nor that of the carbon isotope record reflecting changes in organic carbon burial rates. Although these P accumulation rate patterns need confirmation from other regions with sediment burial significant in global mass balances (e.g., the North Pacific and Southern Ocean), it appears that P weathering inputs to the ocean are decoupled from those of other elements and that further exploration is needed of the relationship between P burial and net organic carbon burial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A complex study of influence of various environmental factors on rates of oxygen (M_O2 ), ammonium (M_NH4), and phosphate (M_PO4) metabolism in Ahnfeltia tobuchiensis has been carried out in situ in the Izmena Bay of the Kunashir Island. The following environmental factors have been included into the investigation: photosynthetically active radiation (PAR); ammonium (NH4); phosphate (PO4); and contents of carbon (C), nitrogen (N), phosphorus (P), and chlorophyll a (Chl) in tissue. Population of agar-containing seaweed A. tobuchiensis forms a layer with thickness up to 0.5 m, which occupies about 23.3 km**2; biomass is equal to 125000 tons. Quantitative assessment of organic matter production and nutrient consumption during oxygen metabolism has been carried out for the whole population. It has been shown that daily oxygen metabolism depends on PAR intensity, concentrations of PO4 and NH4 in seawater, and contents of N and P in tissues (r**2=0.78, p<0.001). Average daily NH4 consumption is 0.21 µmol/g of dry weight/hour and depends on NH4 and O2 concentrations in seawater and on ? and Chl a contents in algal tissues (r**2=0.64, p<0.001). Average daily PO4 consumption is 0.01 µmol/g of dry weight/hour and depends on NH4 concentrations in seawater and on P contents in algal tissues (r**2=0.40, p<0.001).