907 resultados para Bio-responsive drug delivery
Resumo:
Purpose: The present study aimed to evaluate an injectable extended-release formulation of prednisolone acetate (PA) for orbital administration. Methods: Microspheres (MEs) of poly-ε-caprolactone (PCL) containing PA were developed by the method of solvent evaporation. The MEs obtained were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), encapsulation efficiency and in vitro release profile. The in vivo release profile was evaluated in rabbits after periocular injection of an aqueous suspension of MEs. The local biocompatibility of the system was verified by histopathologic analysis of the deployment region. Results: After MEs preparation, morphological analysis by SEM showed the feasibility of the employed method. The content of PA encapsulated was 43 ± 7% and can be considered as satisfactory. The system characterization by DSC technique, in addition to confirm the system stability, did not indicate the existence of interaction between the drug and the polymer. The in vitro release study showed the prolonged-release features of the developed system. Preliminary in vivo study showed the absence of local toxicity and confirmed the prolonged release profile of PA from MEs, suggesting the viability of the developed system for the treatment of orbital inflammatory diseases. Conclusion: The results obtained in this work are relevant and accredit the system developed as a possible alternative to the treatment of inflammatory orbitopathy.
Resumo:
With recent advances in technology and research into drug delivery, the modernization of tests and greater emphasis on the predictability of therapeutic effect by means of in vitro tests, the dissolution test and the study of dissolution profiles are gaining more and more importance. Though introduced initially as a way of characterizing the release profile of poorly soluble drugs, dissolution tests are currently part of pharmacopoeial monographs on almost all the oral solid pharmaceutical forms. The objective of this study was to determine the dissolution profile (percent drug dissolved versus time) of the pioneer brand, generic and similar pharmaceutical capsules containing 500mg cephalexin. Three pharmaceutical brands (reference, generic and similar) were subjected to the dissolution test and in vitro dissolution profiles were recorded. From the results of the dissolution test, it was concluded that the samples met the acceptance criterion, as no difference was observed in the percentage of the drug dissolved in a standard time. The dissolution profile indicated that this medicine, in this pharmaceutical form, dissolves readily (85% of the drug dissolved in 15 minutes) and the curves showed great similarity, suggesting that the 3 brands are pharmaceutically equivalent.
Resumo:
Doxorubicin (DOX) is an anthracycline antibiotic with a broad antitumor spectrum. However, the clinical use of DOX is limited because of its cardiotoxicity, a dose-dependent effect. Colloidal drug delivery systems, such as microemulsions (MEs), allow the incorporation of drugs, modifying the pharmacokinetic (PK) profile and toxic effects. In this study, we evaluated the PK profile and cardiotoxicity of a new DOX ME (DOX-ME). The PK profile of DOX-ME was determined and compared with that of the conventional DOX after single-dose administration (6mg/kg, intravenous) in male Wistar rats (n = 12 per group). The cardiotoxicity of DOX formulations was evaluated by serum creatine kinase MB (CKMB) activity in both animal groups before and after drug administration. The plasma DOX measurements were performed by high-performance liquid chromatography with fluorescence detection, and the CKMB levels were assayed using the CKMB Labtest® kit. The ME system showed a significant increase in plasma DOX concentrations and lower distribution volume when compared with conventional DOX. Serum CKMB activity increased after conventional DOX administration but was unchanged in the DOX-ME group. These results demonstrate modifications in drug access to susceptible sites using DOX-ME. DOX-ME displayed features that make it a promising system for future therapeutic application. © 2012 Wiley Periodicals, Inc.
Resumo:
New drug delivery systems, such as nanoemulsions (NE), have been developed to allow the use of hydrophobic drugs on the antimicrobial photodynamic therapy. This study evaluated the photodynamic potential of aluminum-chloride- phthalocyanine (ClAlPc) entrapped in cationic and anionic NE to inactivate Candida albicans planktonic cultures and biofilm compared with free ClAlPc. Fungal suspensions were treated with different delivery systems containing ClAlPc and light emitting diode. For planktonic suspensions, colonies were counted and cell metabolism was evaluated by XTT assay. Flow cytometry evaluated cell membrane damage. For biofilms, the metabolic activity was evaluated by XTT and ClAlPc distribution through biofilms was analyzed by confocal laser scanning microscopy (CLSM). Fungal viability was dependent on the delivery system, superficial charge and light dose. Free ClAlPc caused photokilling of the yeast when combined with 100 J cm-2. Cationic NE-ClAlPc reduced significantly both colony counts and cell metabolism (P < 0.05). In addition, cationic NE-ClAlPc and free ClAlPc caused significant damage to the cell membrane (P < 0.05). For the biofilms, cationic NE-ClAlPc reduced cell metabolism by 70%. Anionic NE-ClAlPc did not present antifungal activity. CLSM showed different accumulation on biofilms between the delivery systems. Although NE system showed a lower activity for planktonic culture, cationic NE-ClAlPc showed better results for Candida biofilms. Candida albicans biofilm overview after 30 min of contact with free ClAlPc. This study presents the photodynamic potential of aluminum-chloride-phthalocyanine (ClAlPc) entrapped in cationic and anionic nanoemulsions (NE) to inactivate C. albicans planktonic cultures and biofilm comparing with free ClAlPc. The photodynamic effect was dependent on the delivery system, superficial charge and light dose. Cationic NE-ClAlPc and free ClAlPc caused significant reduction in colony counts, cell metabolism and damage to the cell membrane (P < 0.05). However, only the free ClAlPc was able to cause photokilling of the yeast. The anionic NE-ClAlPc did not present antifungal activity. Although NE system showed a lower activity for planktonic culture, cationic NE-ClAlPc showed better results for Candida biofilms. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.
Resumo:
Polymers blends represent an important approach to obtain materials with modulated properties to reach different and desired properties in designing drug delivery systems in order to fulfill therapeutic needs. The aim of this work was to evaluate the influence of drug loading and polymer ratio on the physicochemical properties of microparticles of cross-linked high amylose starch-pectin blends loaded with diclofenac for further application in controlled drug delivery systems. Thermal analysis and X-ray diffractograms evidenced the occurrence of drug-polymer interactions and the former pointed also to an increase in thermal stability due to drug loading. The rheological properties demonstrated that drug loading resulted in formation of weaker gels while the increase of pectin ratio contributes to origin stronger structures. © 2012 Elsevier Ltd.
Resumo:
Polymers mixtures as well as cross-linking reactions are approaches that have been used successfully to modulate the polymers characteristics in order to improve the control over drug release rate. High amylose and pectin are polysaccharides frequently used to prepare drug delivery systems. Since the drying technique can strongly influence the properties of such systems, the aim of this work was to characterize high amylose/pectin mixtures cross-linked with sodium trimetaphosphate and dried by different techniques-oven and lyophilization. The results showed that samples dried by lyophilization presented reduced particle size, higher porosity and higher swelling ability than the samples dried in oven. Besides, lower thermal stability and different diffraction patterns showed by the former particles should reflect the structural changes as a function of drying technique. © 2013 Informa Healthcare USA, Inc.
Resumo:
The microbiological control of moisturizing mask formulation added of hibiscus flowers, assai palm, black mulberry and papaw glycolic extracts, determining the number of viable microorganisms and possible presence of pathogenic. The moisturizing mask formulation was composed of zinc oxide (5. 0%) and moisturizing cream constituted of triceteareth-4 phosphate (and) cetyl alcohol (and) stearyl alcohol (and) sodium cetearyl sulfate (and) oleth-10 (qs 50g). To this formulation was added hibiscus flowers glycolic extract (2. 5%), assai palm glycolic extract (1. 5%), black mulberry glycolic extract (1. 5%) and papaw glycolic extract (2. 0%). The formulation was stored in aseptically clean recipients, away from humidity and light, in fresh and airy places. The results of the microbiological analysis on the counting of aerobic mesophilic microorganisms (bacteria and fungi), of the above mentioned formulation, revealed a bioburden < 10 CFU/mL in all samples. Such data indicate adequate microbiological quality of the tested products, according to official recommendations. Furthermore, it was not detected the presence of pathogenic microorganisms, assuring the harmlessness of the formulation. The results lead us to conclude that the formulation and raw materials analyzed did not present microbial contamination, evidenced for estimating the number of viable microorganisms (<10 UFC/g) and for researching pathogens.
Resumo:
The purpose of this study was to develop a mucoadhesive stimuli-sensitive drug delivery system for nasal administration of zidovudine (AZT). The system was prepared by formulating a low viscosity precursor of a liquid crystal phase, taking advantage of its lyotropic phase behavior. Flow rheology measurements showed that the formulation composed of PPG-5-CETETH-20, oleic acid and water (55, 30, 15% w/w), denominated P, has Newtonian flow behavior. Polarized light microscopy (PLM) revealed that formulation P is isotropic, whereas its 1:1 (w/w) dilution with artificial nasal mucus (ANM) changed the system to an anisotropic lamellar phase (PD). Oscillatory frequency sweep analysis showed that PD has a high storage modulus (G′) at nasal temperatures. Measurement of the mucoadhesive force against excised porcine nasal mucosa or a mucin disk proved that the transition to the lamellar phase tripled the work of mucoadhesion. Ex vivo permeation studies across porcine nasal mucosa exhibited an 18-fold rise in the permeability of AZT from the formulation. The Weibull mathematical model suggested that the AZT is released by Fickian diffusion mechanisms. Hence, the physicochemical characterization, combined with ex vivo studies, revealed that the PPG-5-CETETH-20, oleic acid, and water formulation could form a mucoadhesive matrix in contact with nasal mucus that promoted nasal absorption of the AZT. For an in vivo assessment, the plasma concentrations of AZT in rats were determined by HPLC method following intravenous and intranasal administration of AZT-loaded P formulation (PA) and AZT solution, respectively, at a dose of 8 mg/kg. The intranasal administration of PA resulted in a fast absorption process (Tmax = 6.7 min). Therefore, a liquid crystal precursor formulation administered by the nasal route might represent a promising novel tool for the systemic delivery of AZT and other antiretroviral drugs. In the present study, the uptake of AZT absorption in the nasal mucosa was demonstrated, providing new foundations for clinical trials in patients with AIDS. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Microbial biofilms are responsible for a variety of microbial infections in different parts of the body, such as urinary tract infections, catheter infections, middle-ear infections, gingivitis, caries, periodontitis, orthopedic implants, and so on. The microbial biofilm cells have properties and gene expression patterns distinct from planktonic cells, including phenotypic variations in enzymic activity, cell wall composition and surface structure, which increase the resistance to antibiotics and other antimicrobial treatments. There is consequently an urgent need for new approaches to attack biofilm-associated microorganisms, and antimicrobial photodynamic therapy (aPDT) may be a promising candidate. aPDT involves the combination of a nontoxic dye and low-intensity visible light which, in the presence of oxygen, produces cytotoxic reactive oxygen species. It has been demonstrated that many biofilms are susceptible to aPDT, particularly in dental disease. This review will focus on aspects of aPDT that are designed to increase efficiency against biofilms modalities to enhance penetration of photosensitizer into biofilm, and a combination of aPDT with biofilm-disrupting agents. © 2013 Informa UK Ltd.
Resumo:
Currently, schistosomiasis mansoni is treated clinically with praziquantel (PZQ). Nevertheless, cases of tolerance and resistance to this drug have been reported, creating the need to develop new drugs or to improve existing drugs. Considering the small number of new drugs against Schistosoma mansoni, the design of nanotechnology-based drug delivery systems is an important strategy in combating this disease. The aim of this study was to evaluate the activity of PZQ containing liposome (lip.PZQ) on S. mansoni, BH strain. Mice were treated orally with different concentrations of PZQ and lip.PZQ 30 and 45 days following infection. The number of worms, recovered by perfusion of the hepatic portal system, and the number of eggs found in the intestine and liver were analysed. Parasite egg counts were also performed. The most active formulation for all parameters was 300. mg/kg of lip.PZQ, since as it decreased the total number of worms by 68.8%, the number of eggs in the intestine by 79%, and the number of hepatic granulomas by 98.4% compared to untreated controls. In addition, this concentration decreased egg counts by 55.5%. The improved efficacy of the treatment with lip.PZQ, especially when administered 45 days following infection, compared with the positive-control group (untreated) and the groups that received free PZQ, can be explained by greater bioavailability in the host organism; the preferred target of lip.PZQ is the liver, and lip.PZQ is better absorbed by the tegument of S. mansoni, which has an affinity for phospholipids. © 2013 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)