875 resultados para Binary Classification
Resumo:
The aim of phase II single-arm clinical trials of a new drug is to determine whether it has sufficient promising activity to warrant its further development. For the last several years Bayesian statistical methods have been proposed and used. Bayesian approaches are ideal for earlier phase trials as they take into account information that accrues during a trial. Predictive probabilities are then updated and so become more accurate as the trial progresses. Suitable priors can act as pseudo samples, which make small sample clinical trials more informative. Thus patients have better chances to receive better treatments. The goal of this paper is to provide a tutorial for statisticians who use Bayesian methods for the first time or investigators who have some statistical background. In addition, real data from three clinical trials are presented as examples to illustrate how to conduct a Bayesian approach for phase II single-arm clinical trials with binary outcomes.
Resumo:
In this paper, Bayesian decision procedures are developed for dose-escalation studies based on binary measures of undesirable events and continuous measures of therapeutic benefit. The methods generalize earlier approaches where undesirable events and therapeutic benefit are both binary. A logistic regression model is used to model the binary responses, while a linear regression model is used to model the continuous responses. Prior distributions for the unknown model parameters are suggested. A gain function is discussed and an optional safety constraint is included. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
Objectives: To assess the potential source of variation that surgeon may add to patient outcome in a clinical trial of surgical procedures. Methods: Two large (n = 1380) parallel multicentre randomized surgical trials were undertaken to compare laparoscopically assisted hysterectomy with conventional methods of abdominal and vaginal hysterectomy; involving 43 surgeons. The primary end point of the trial was the occurrence of at least one major complication. Patients were nested within surgeons giving the data set a hierarchical structure. A total of 10% of patients had at least one major complication, that is, a sparse binary outcome variable. A linear mixed logistic regression model (with logit link function) was used to model the probability of a major complication, with surgeon fitted as a random effect. Models were fitted using the method of maximum likelihood in SAS((R)). Results: There were many convergence problems. These were resolved using a variety of approaches including; treating all effects as fixed for the initial model building; modelling the variance of a parameter on a logarithmic scale and centring of continuous covariates. The initial model building process indicated no significant 'type of operation' across surgeon interaction effect in either trial, the 'type of operation' term was highly significant in the abdominal trial, and the 'surgeon' term was not significant in either trial. Conclusions: The analysis did not find a surgeon effect but it is difficult to conclude that there was not a difference between surgeons. The statistical test may have lacked sufficient power, the variance estimates were small with large standard errors, indicating that the precision of the variance estimates may be questionable.
Resumo:
The majority of research on magnetic nanoparticles has focused on optical, electrical, and magnetic storage areas. Recently, the application of magnetic nanoparticles as magnetically separable nanovehicles for chemical or biological species has become an area of intensive research but with rather different challenging criteria that are yet to be addressed. For example, the enhancement of intrinsically weak magnetic properties, avoidance of magnetic interactions among particles, and improvement of the stability of the nanoparticles remain key issues. Here, it is demonstrated using sequential nanochemistry preparation techniques that exchange-coupled nanomagnets, such as FePt-Fe3Pt or FePt-Fe3O4 with dramatically enhanced magnetization, can be placed inside a silica nanosphere. The advantages of enhanced magnetization and the provision of protective coating and anchored sites on the silica shell surface render these new coated particles suitable for use in magnetic separation.
Resumo:
The purpose of this study was to apply and compare two time-domain analysis procedures in the determination of oxygen uptake (VO2) kinetics in response to a pseudorandom binary sequence (PRBS) exercise test. PRBS exercise tests have typically been analysed in the frequency domain. However, the complex interpretation of frequency responses may have limited the application of this procedure in both sporting and clinical contexts, where a single time measurement would facilitate subject comparison. The relative potential of both a mean response time (MRT) and a peak cross-correlation time (PCCT) was investigated. This study was divided into two parts: a test-retest reliability study (part A), in which 10 healthy male subjects completed two identical PRBS exercise tests, and a comparison of the VO2 kinetics of 12 elite endurance runners (ER) and 12 elite sprinters (SR; part B). In part A, 95% limits of agreement were calculated for comparison between MRT and PCCT. The results of part A showed no significant difference between test and retest as assessed by MRT [mean (SD) 42.2 (4.2) s and 43.8 (6.9) s] or by PCCT [21.8 (3.7) s and 22.7 (4.5) s]. Measurement error (%) was lower for MRT in comparison with PCCT (16% and 25%, respectively). In part B of the study, the VO2 kinetics of ER were significantly faster than those of SR, as assessed by MRT [33.4 (3.4) s and 39.9 (7.1) s, respectively; P<0.01] and PCCT [20.9 (3.8) s and 24.8 (4.5) s; P < 0.05]. It is possible that either analysis procedure could provide a single test measurement Of VO2 kinetics; however, the greater reliability of the MRT data suggests that this method has more potential for development in the assessment Of VO2 kinetics by PRBS exercise testing.
Resumo:
The phase separation behaviour in aqueous mixtures of poly(methyl vinyl ether) and hydroxypropylcellulose has been studied by cloud points method and viscometric measurements. The miscibility of these blends in solid state has been assessed by infrared spectroscopy; methanol vapours sorption experiments and scanning electron microscopy. The values of Gibbs energy of mixing of the polymers and their blends with methanol as well as between each other were calculated. It was found that in solid state the polymers can interact with methanol very well but the polymer-polymer interactions are unfavourable. Although in aqueous solutions the polymers exhibit some intermolecular interactions their solid blends are not completely miscible. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In this work the G(A)(0) distribution is assumed as the universal model for amplitude Synthetic Aperture (SAR) imagery data under the Multiplicative Model. The observed data, therefore, is assumed to obey a G(A)(0) (alpha; gamma, n) law, where the parameter n is related to the speckle noise, and (alpha, gamma) are related to the ground truth, giving information about the background. Therefore, maps generated by the estimation of (alpha, gamma) in each coordinate can be used as the input for classification methods. Maximum likelihood estimators are derived and used to form estimated parameter maps. This estimation can be hampered by the presence of corner reflectors, man-made objects used to calibrate SAR images that produce large return values. In order to alleviate this contamination, robust (M) estimators are also derived for the universal model. Gaussian Maximum Likelihood classification is used to obtain maps using hard-to-deal-with simulated data, and the superiority of robust estimation is quantitatively assessed.
Resumo:
In this paper, an improved stochastic discrimination (SD) is introduced to reduce the error rate of the standard SD in the context of multi-class classification problem. The learning procedure of the improved SD consists of two stages. In the first stage, a standard SD, but with shorter learning period is carried out to identify an important space where all the misclassified samples are located. In the second stage, the standard SD is modified by (i) restricting sampling in the important space; and (ii) introducing a new discriminant function for samples in the important space. It is shown by mathematical derivation that the new discriminant function has the same mean, but smaller variance than that of standard SD for samples in the important space. It is also analyzed that the smaller the variance of the discriminant function, the lower the error rate of the classifier. Consequently, the proposed improved SD improves standard SD by its capability of achieving higher classification accuracy. Illustrative examples axe provided to demonstrate the effectiveness of the proposed improved SD.
Classification of lactose and mandelic acid THz spectra using subspace and wavelet-packet algorithms
Resumo:
This work compares classification results of lactose, mandelic acid and dl-mandelic acid, obtained on the basis of their respective THz transients. The performance of three different pre-processing algorithms applied to the time-domain signatures obtained using a THz-transient spectrometer are contrasted by evaluating the classifier performance. A range of amplitudes of zero-mean white Gaussian noise are used to artificially degrade the signal-to-noise ratio of the time-domain signatures to generate the data sets that are presented to the classifier for both learning and validation purposes. This gradual degradation of interferograms by increasing the noise level is equivalent to performing measurements assuming a reduced integration time. Three signal processing algorithms were adopted for the evaluation of the complex insertion loss function of the samples under study; a) standard evaluation by ratioing the sample with the background spectra, b) a subspace identification algorithm and c) a novel wavelet-packet identification procedure. Within class and between class dispersion metrics are adopted for the three data sets. A discrimination metric evaluates how well the three classes can be distinguished within the frequency range 0. 1 - 1.0 THz using the above algorithms.