969 resultados para Bellingshausen Sea, slope on TMF


Relevância:

50.00% 50.00%

Publicador:

Resumo:

The circulation of Atlantic water along the European continental slope, in particular the inflow into the North Sea, influences North Sea water characteristics with consequent changes in the environment affecting plankton community dynamics. The long-term effect of fluctuating oceanographic conditions oil the North Sea, pelagic ecosystem is assessed. It is shown that (i) there are similar regime shifts in the inflow through the northern North Sea and in Sea, Surface Temperature, (ii) long-term phytoplankton trends are influenced by the inflow only in some North Sea regions, and (iii) the spatial variability in chemicophysical and biological parameters highlight the influence of smaller scale processes.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The marine environment is indubitably the largest contiguous habitat on Earth. Because of its vast volume and area, the influence of the world ocean on global climate is profound and plays an important role in human welfare and destiny. The marine environment encompasses several habitats, from the sea surface layer down through the bulk water column, which extends >10,000 meters depth, and further down to the habitats on and under the sea floor. Compared to surface habitats, which have relatively high kinetic energy, deep-ocean circulation is very sluggish. By comparison, life in the deep sea is characterized by a relatively constant physical and chemical environment. Deep water occupying the world ocean basin is a potential natural resource based on its properties such as low temperature, high pressure and relatively unexplored properties. So, a judicious assessment of the marine resources and its management are essential to ensure sustainable development of the country’s ocean resources. Marine sediments are complex environments that are affected by both physiological and biological factors, water movements and burrowing animals. They encompass a large extent of aggregates falling from the surface waters. In aquatic ecosystems, the flux of organic matter to the bottom sediments depend on primary productivity at the ocean surface and water depth. Over 50% of the earth’s surface is covered by deep-sea sediments that are primarily formed through the continual deposition of particles from the productive pelagic waters (Vetriani et al., 1999). These aggregates are regarded as ‘hot spots’ of microbial activity in the ocean (Simon et al., 2002). This represents a good nutritional substrate for heterotrophic bacteria and favours bacterial growth

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Asynchronously coupled atmosphere and ocean general circulation model simulations are used to examine the consequences of changes in the west/east sea-surface temperature (SST) gradient across the equatorial Pacific at the last glacial maximum (LGM). Simulations forced by the CLIMAP SST for the LGM, where the west/east SST gradient across the Pacific is reduced compared to present, produce a reduction in the strength of the trade winds and a decrease in the west/east slope of the equatorial thermocline that is incompatible with thermocline depths newly inferred from foraminiferal assemblages. Stronger-than-present trade winds, and a more realistic simulation of the thermocline slope, are produced when eastern Pacific SSTs are 2°C cooler than western Pacific SSTs. Our study highlights the importance of spatial heterogeneity in tropical SSTs in determining key features of the glacial climate.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Foraminiferal data were obtained from 66 samples of box cores on the southeastern Brazilian upper margin (between 23.8A degrees-25.9A degrees S and 42.8A degrees-46.13A degrees W) to evaluate the benthic foraminiferal fauna distribution and its relation to some selected abiotic parameters. We focused on areas with different primary production regimes on the southern Brazilian margin, which is generally considered as an oligotrophic region. The total density (D), richness (R), mean diversity (H) over bar`, average living depth (ALD(X) ) and percentages of specimens of different microhabitats (epifauna, shallow infauna, intermediate infauna and deep infauna) were analyzed. The dominant species identified were Uvigerina spp., Globocassidulina subglobosa, Bulimina marginata, Adercotryma wrighti, Islandiella norcrossi, Rhizammina spp. and Brizalina sp.. We also established a set of mathematical functions for analyzing the vertical foraminiferal distribution patterns, providing a quantitative tool that allows correlating the microfaunal density distributions with abiotic factors. In general, the cores that fit with pure exponential decaying functions were related to the oligotrophic conditions prevalent on the Brazilian margin and to the flow of the Brazilian Current (BC). Different foraminiferal responses were identified in cores located in higher productivity zones, such as the northern and the southern region of the study area, where high percentages of infauna were encountered in these cores, and the functions used to fit these profiles differ appreciably from a pure exponential function, as a response of the significant living fauna in deeper layers of the sediment. One of the main factors supporting the different foraminiferal assemblage responses may be related to the differences in primary productivity of the water column and, consequently, in the estimated carbon flux to the sea floor. Nevertheless, also bottom water velocities, substrate type and water depth need to be considered.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper presents for the first time a morphological and surface sediment characterization of the Uruguayan outer continental shelf and slope. The study is based on a high-resolution coverage using hydrographical, geomorphological and sedimentological sampling and several textural and productivity proxies. Along slope terraces and an important canyon system characterizes continental slope morphology, indicating that across- and down-slope sedimentary processes control large-scale sedimentation. Terraces represent the prolongation of the Argentinean Contouritic Depositional System that vanishes in the study area, presumably as a result of the dynamic of the Brazil-Malvinas confluence. Canyons incised in the upper slope are likely related to low-stand sea level conditions. At the outer shelf and shallow upper slope (170-250 m depth), off-shelf sand transport is inferred from the distribution of relict sand and reworked biogenic gravel. In the upper continental slope, the northern region is characterized by an erosive environment controlled by a steep slope and the southward flowing Brazil current. In the south, a depositional environment is enhanced by the presence of a gentler slope and seaward incised canyons and is mainly controlled by hemipelagic processes associated with nutrient-rich Sub-Antarctic Waters (SAW), by its confluence with South Atlantic Central Waters (SACW) and by the Rio de la Plata’s (RdlP) influence. Additionally, within the upper slope, the occurrence of igneous-metamorphic cobbles and pebbles in canyon and mound lag deposits suggests the influence of glacial fluvial discharge and/or iceberg transport processes. In the middle slope, sedimentation is controlled by thermohaline-induced deep-water bottom currents. The decreasing influence of the erosive Antarctic Intermediate Water (AAIW) is evident in a northward diminution in grain size. The variety of transport and sedimentary processes identified reflect the control of the Brazil-Malvinas confluence zone and the Rio de la Plata’s discharge.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Fifteen surface sediment samples from the Pakistan shelf and upper continental slope and a Late Quaternary high-sedimentation rate core (573 m water depth, Pakistan continental margin) have been analysed to improve the understanding of the factors influencing pteropod preservation. The aragonite compensation depth (ACD) is located at 250-400 m water depth, which corroborates previous observations of a very shallow ACD in the northern Arabian Sea. With the exception of the Hab transect off Karachi, the ACD coincides with the upper boundary of the OMZ located at 250 m water depth. The shell preservation index of the pteropod Limacina inflata (LDX) was applied on six surface sediment samples showing good to very good preservation (LDX: 2.2 to 1.3). The 30 000 yr long record of sediment core SO90 137KA is characterized by alternations between bioturbated and laminated sediments. Bioturbated sediments occurring in the Early Holocene, Younger Dryas and time-equivalents of Heinrich events contain well to perfectly preserved tests of L. inflata (LDX: 2.1-0.2), whereas only traces of pteropods are found in laminated intervals. The close linkage of pteropod preservation in the surface sediments and in core 137KA to well-oxygenated conditions can be explained by repetitive intermediate water formation in the Arabian Sea down to at least 600 m water depth in times of enhanced NE monsoons during stadials and H-equivalents. Low amounts of pteropods in laminated sediments (interstadials, Late Holocene) and in the present-day oxygen minimum zone (OMZ) indicate a weak NE monsoon, stable OMZ and shallow ACD.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Submarine slope failures of various types and sizes are common along the tectonic and seismically active Ligurian margin, northwestern Mediterranean Sea, primarily because of seismicity up to ~M6, rapid sediment deposition in the Var fluvial system, and steepness of the continental slope (average 11°). We present geophysical, sedimentological and geotechnical results of two distinct slides in water depth >1,500 m: one located on the flank of the Upper Var Valley called Western Slide (WS), another located at the base of continental slope called Eastern Slide (ES). WS is a superficial slide characterized by a slope angle of ~4.6° and shallow scar (~30 m) whereas ES is a deep-seated slide with a lower slope angle (~3°) and deep scar (~100 m). Both areas mainly comprise clayey silt with intermediate plasticity, low water content (30-75 %) and underconsolidation to strong overconsolidation. Upslope undeformed sediments have low undrained shear strength (0-20 kPa) increasing gradually with depth, whereas an abrupt increase in strength up to 200 kPa occurs at a depth of ~3.6 m in the headwall of WS and ~1.0 m in the headwall of ES. These boundaries are interpreted as earlier failure planes that have been covered by hemipelagite or talus from upslope after landslide emplacement. Infinite slope stability analyses indicate both sites are stable under static conditions; however, slope failure may occur in undrained earthquake condition. Peak earthquake acceleration from 0.09 g on WS and 0.12 g on ES, i.e. M5-5.3 earthquakes on the spot, would be required to induce slope instability. Different failure styles include rapid sedimentation on steep canyon flanks with undercutting causing superficial slides in the west and an earthquake on the adjacent Marcel fault to trigger a deep-seated slide in the east.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The Antarctic continental slope spans the depths from the shelf break (usually between 500 and 1000 m) to ~3000 m, is very steep, overlain by 'warm' (2-2.5 °C) Circumpolar Deep Water (CDW), and life there is poorly studied. This study investigates whether life on Antarctica's continental slope is essentially an extension of the shelf or the abyssal fauna, a transition zone between these or clearly distinct in its own right. Using data from several cruises to the Weddell Sea and Scotia Sea, including the ANDEEP (ANtarctic benthic DEEP-sea biodiversity, colonisation history and recent community patterns) I-III, BIOPEARL (Biodiversity, Phylogeny, Evolution and Adaptive Radiation of Life in Antarctica) 1 and EASIZ (Ecology of the Antarctic Sea Ice Zone) II cruises as well as current databases (SOMBASE, SCAR-MarBIN), four different taxa were selected (i.e. cheilostome bryozoans, isopod and ostracod crustaceans and echinoid echinoderms) and two areas, the Weddell Sea and the Scotia Sea, to examine faunal composition, richness and affinities. The answer has important ramifications to the link between physical oceanography and ecology, and the potential of the slope to act as a refuge and resupply zone to the shelf during glaciations. Benthic samples were collected using Agassiz trawl, epibenthic sledge and Rauschert sled. By bathymetric definition, these data suggest that despite eurybathy in some of the groups examined and apparent similarity of physical conditions in the Antarctic, the shelf, slope and abyssal faunas were clearly separated in the Weddell Sea. However, no such separation of faunas was apparent in the Scotia Sea (except in echinoids). Using a geomorphological definition of the slope, shelf-slope-abyss similarity only changed significantly in the bryozoans. Our results did not support the presence of a homogenous and unique Antarctic slope fauna despite a high number of species being restricted to the slope. However, it remains the case that there may be a unique Antarctic slope fauna, but the paucity of our samples could not demonstrate this in the Scotia Sea. It is very likely that various ecological and evolutionary factors (such as topography, water-mass and sediment characteristics, input of particulate organic carbon (POC) and glaciological history) drive slope distinctness. Isopods showed greatest species richness at slope depths, whereas bryozoans and ostracods were more speciose at shelf depths; however, significance varied across Weddell Sea and Scotia Sea and depending on bathymetric vs. geomorphological definitions. Whilst the slope may harbour some source populations for localised shelf recolonisation, the absence of many shelf species, genera and even families (in a poorly dispersing taxon) from the continental slope indicate that it was not a universal refuge for Antarctic shelf fauna.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Controls of sediment dynamics at the Galician continental slope (NW Iberia) during the past 30 ka were reconstructed from three new gravity cores (GeoB11035-1, 130206-1, 13071-1) based on sedimentological (e.g. sortable silt, IRD), micropalaeontological (e.g. coccoliths), geochemical (AMS 14C, XRF) and geophysical (e.g. magnetic susceptibility) diagnostics. The data are consistent with existing regional knowledge that, during marine isotope stages 3-1, variations in detrital input, marine productivity and sea level were the essential drivers of sediment availability on the slope, whereas deep-water current velocities controlled sediment deposition: (1) the period prior to 30 cal ka BP is characterized by minor but systematic variations in various proxies which can be associated with D-O cycles; (2) between 30 and 18 cal ka BP, high detrital input and steady slope-parallel currents led to constant sedimentation; (3) from the LGM until 10 cal ka BP, the shelf-transgressive sea-level rise increased the detrital particle flux; sedimentation was influenced by significantly enhanced deep-water circulation during the Bølling/Allerød, and subsequent slowing during the Younger Dryas; (4) an abrupt and lasting change to hemipelagic sedimentation at ca. 10 cal ka BP was probably due to Holocene warming and decelerated transgression; (5) after 5 cal ka BP, additional input of detrital material to the slope is plausibly linked to the evolution of fine-grained depocentres on the Galician shelf, this being the first report of this close shelf-slope sedimentary linkage off NW Iberia. Furthermore, there is novel evidence of the nowadays strong outer shelf Iberian Poleward Current becoming established at about 15.5 cal ka BP. The data also demonstrate that small-scale morphologic features and local pathways of sediment export from the neighbouring shelf play an important role for sediment distribution on the NW Iberian slope, including a hitherto unknown sediment conduit off the Ría de Arousa. By implication, the impact of local morphology on along- and down-slope sediment dynamics is more complex than commonly considered, and deserves future attention.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Sediment cores from nine sites along a profile on the Antarctic continental margin off Kapp Norvegia were analysed sedimentologicaly. The carbonate and organic carbon content, grain size distribution, composition of the coarse fraction and clay minerals were determined. d18O- and d13C-isotope ratios were also measured. The distribution of ice rafted debris was determined by a new method. Sedimentation-rates were obtained from 230Th- and 14C-analyses. A segregation into seven different sediment facies was made possible by different sedimentological parameters, which can be attributed to different sedimentation environments and conditions. Thr profile can be divided morphologicaly into shelf, upper continental slope, slope terrace and lower continental slope. The paratill facies is deposited on the shelf during an interglacial phase and consists mainly of ice rafted sediments. A portion of the fine fraction is being carried away by the antarctic coastel current. The sedimentation rate lies between 0 and 3 cm/1000 a. The coarse grained deposits of the upper, relatively steep continental slope, were specified as a rest sediment. Current and gravity sediment transport are responsible for the intensive sorting of ice rafted material coming from the shelf. The fine sediment is carried away by currents while sand and silt are deposited as small turbidites on the slope terrace. The morainic facies only appears at the base of the upper continental slope and defines ice advances, beyond the shelf margin. The facies mainly consists of transported shelf sediments. The interglacial facies, deposited during the interglacial phases on the continental slope, are characterized by high proportions of ice raft, coarse mean grain size, low content of montmorillonite and a carbonate content, which mainly originates from planktonic foraminifera (N. pachyderma). At the central part of the slope the sedimentation rate is at its lowest (2 cm/1000 a) and increases to 3-4 cm/1000 a towards the sea, due to high production of biogenic components and towards the continent due to an increasing input of terrigenous material. Sedimentary conditions during glacial times are depicted in the glacial facies by a low content of ice rafted debris, a lower mean grain size and a high content of montmorillonite. Biogeneous components are absent. The sedimentation rate is generally about 1 cm/1000a. A transition facies is deposited during the transition from glacial to interglacial conditions. Typical for this facies, with a terrigenous composition similar to the interglacial facies, is a high content of radiolaria. The reason for the change of plankton from a siliceous to a carbonacous fauna may have been the changing hydrography caused by the sea ice. The surge facies is deposited at the continental margin under the ice shelf and is a sediment exclusively delivered by currents. With the aid of this facies it was, for the first time possible to prove the existence of Antarctic ice surges, an aspect wh ich has been discussed for the past 20 years.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Distributions of Mn, Fe, Cu, Cd, Cr, Co and Ni in sea water are investigated (42 samples, dissolved and particulate forms) in the vicinity of the underwater gas vent field on the northwestern slope of the Paramushir Island. While regular background distributions of the elements occur in the shore zone, there is a column of elevated concentrations of particulate matter, particulate Mn, and dissolved Mn, Fe, Cu, Cd, Cr, Co and Ni that coincides with location of the gas plume. This column can be traced as high as 780 m above the bottom. High metal concentrations in water of the plume are attributable to physico-chemical concentration at the phase interface; the source of elevated mineral concentrations is obviously flux of dissolved minerals from interstitial waters, which extends to considerable distances in vertical direction.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The benthic fauna was investigated during the expedition ANT-XXIV/2 (2007/08) in relation to oceanographic features, biogeochemical properties and sediment characteristics, as well as the benthic, pelagic and air-breathing fauna. The results document that Maud Rise (MR) differs distinctly from surrounding deep-sea basins investigated during previous Southern Ocean expeditions (ANDEEP 2002, 2005). Considering all taxa, the overall similarity between MR and adjacent stations was low (~20% Bray-Curtis-Similarity), and analyses of single taxa show obvious differences in species composition, abundances and densities. The composition and diversity of bivalves of MR are characterised by extremely high abundances of three species, especially the small sized Vesicomya spp. Exceptionally high gastropod abundance at MR is due to the single species Onoba subantarctica wilkesiana, a small brooder that may prey upon abundant benthic foraminiferas. The abundance and diversity of isopods also show that one family, Haplomunnidae, occurs with a surprisingly high number of individuals at MR while this family was not found at any of the 40 bathyal and abyssal ANDEEP stations. Similarly, polychaetes, especially the tube-dwelling, suspension-feeder fraction, are represented by species not found at the comparison stations. Sponges comprise almost exclusively small specimens in relatively high numbers, especially a few species of Polymastiidae. Water-column sampling from the surface to the seafloor, including observations of top predators, indicate the existence of a prospering pelagic food web. Local concentrations of top predators and zooplankton are associated with a rich ice-edge bloom located over the northern slope of MR. There the sea ice melts, which is probably accelerated by the advection of warm water at intermediate depth. Over the southern slope, high concentrations of Antarctic krill (Euphausia superba) occur under dense sea ice and attract Antarctic Minke Whales (Balaenoptera bonaerensis) and several seabird species. These findings suggest that biological prosperity over MR is related to both oceanographic and sea-ice processes. Downward transport of the organic matter produced in the pelagic realm may be more constant than elsewhere due to low lateral drift over MR.