998 resultados para Beam aperture
Resumo:
InAs and In0.9Al0.1As self-assembled quantum dots have been grown by Stranski-Krastanow growth mode on In0.52Al0.48As lattice-matched on (0 0 1)InP substrates by MBE. The ternary In0.9Al0.1As dots on InP was demonstrated for the first time. The structural and optical properties were characterized using TEM and PL, respectively. Experimental results show that, a larger critical thickness is required for In0.9Al0.1As dots formation than for InAs dots, the In0.9Al0.1As dots show larger sizes and less homogeneity; some ordering in alignment can be observed in both InAs and In0.9Al0.1As dots, and In0.9Al0.1As dots give narrower luminescence than InAs dots. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
We have found that GaN epilayers grown by NH3-source molecular beam epitaxy (MBE) contain hydrogen. Dependent on the hydrogen concentration, GaN on (0001) sapphire can be either under biaxially compressive strain or under biaxially tensile strain. Furthermore, we notice that background electrons in GaN increase with hydrogen incorporation. X-ray photoelectron spectroscopy (XPS) measurements of the N1s region indicate that hydrogen is bound to nitrogen. So, the microdefect Ga...H-N is an effective nitrogen vacancy in GaN, and it may be a donor partly answering for the background electrons. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Uniform and high phosphorous doping has been demonstrated during Si growth by GSMBE using disilane and phosphine. The p-n diodes, which consist of a n-Si layer and a p-SiGe layer grown on Si substrate, show a normal I-V characteristic. A roughening transition during P-doped Si growth is found. Ex situ SEM results show that thinner film is specular. When the film becomes thicker, there are small pits of different sizes randomly distributed on the flat surface. The average pit size increases, the pit density decreases, and the size distribution is narrower for even thicker film. No extended defects are found at the substrate interface or in the epilayer. Possible causes for the morphological evolution are discussed. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A phenomenological model is proposed to explain quantitatively the interesting compositional dependence on the Ge incorporation rate during low-temperature growth of Si1-xGex by disilane and solid-Ge molecular beam epitaxy, based on enhanced hydrogen desorption from Si sites due to the presence of Ge atoms. The hydrogen desorption rate constant for disilane on Si sites is fitted to an exponential function of Ge incorporation rate and a possible physical explanation is discussed. Simulated results are in excellent agreement with experimental data. (C) 1999 American Institute of Physics. [S0021-8979(99)02109-X].
Resumo:
Self-assembled InxGa1-xAs quantum dots (QDs) on (311) and (100) GaAs surfaces have been grown by conventional solid source molecular beam epitaxy. Spontaneously ordering alignment of InxGa1-xAs QDs with lower In content around 0.3 has been observed on As-terminated (B type) surfaces. The direction of alignment orientation of the QDs formation differs from the direction of misorientation of the (311) B surface, and is strongly dependent upon the In content x. The ordering alignment becomes significantly deteriorated as the In content is increased to above 0.5 or as the QDs are formed on (100) and (311) Ga-terminated (A type) substrates.
Resumo:
Growth mode and strain relaxation of molecular-beam-epitaxy grown InAs/InAlAs/InP (111)A system have been investigated using reflection high-energy electron diffraction, transmission electron microscopy, atomic force microscopy, and photoluminescence measurements. In direct contrast to the well-studied InAs/GaAs system, our experimental results show that the InAs grown on InAlAs/InP (111)A follows the Stranski-Krastanov mode. Both self-organized InAs quantum dots and relaxed InAs islands are formed depending on the InAs coverage. Intense luminescence signals from both the InAs quantum dots and wetting layer are observed. The luminescence efficiency of (111)A samples is comparable to that of (001) samples, suggesting the feasibility of fabricating quantum dot optoelectronic devices on InP (111)A surfaces. (C) 1999 American Institute of Physics. [S0003-6951(99)01010-4].
Resumo:
Gas source molecular beam epitaxy has been used to grow Si1-xGex alloys and Si1-xGex/Si multi-quantum wells (MQWs) on (100) Si substrates with Si2H6 and GeH4 as sources. Heterostructures and MQWs with mirror-like surface morphology, good crystalline qualify, and abrupt interfaces have been studied by a variety of in situ and ex situ techniques. The structural stability and strain relaxation in Si1-xGex/Si heterostructures have been investigated, and compared to that in the As ion-implanted Si1-xGex epilayers. The results show that the strain relaxation mechanism of the non-implanted Si1-xGex epilayers is different from that of the As ion-implanted Si1-xGex epilayers.
Resumo:
Structural properties of SiGe/Si single wells are studied by double-crystal X-ray diffraction. Four SiGe/Si single wells have been grown on Si (0 0 1) at 750 degrees C by disilane and solid-Ge molecular beam epitaxy with varied disilane cracking temperature. Using dynamic theory, together with kinematic theory and the specific growth procedure adopted, structural parameters in the multilayer structure are determined precisely. The results are compared with those obtained from PL and XTEM as well as AES measurements. It is found that disilane adsorption is dependent on cracking temperature as well as Ge incorporation. Disilane adsorption is increased by cracking disilane while it decreased with Ge incorporation (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Epitaxial cerium dioxide films on single-crystal silicon substrates (CeO2/Si) have been grown by a dual mass-analyzed low-energy ion beam deposition (IBD) system. By double-crystal X-ray diffraction (XRD), Full Width at Half Maximum (FWHM) are 23' and 33' in the rocking curves for (222) and (111) faces of the CeO2 film, respectively, and the lattice-mismatch Delta a/a with the substrate is about - 0.123%. The results show that the CeO2/Si grown by IBD is of high crystalline quality. In this work, the CeO2/Si heterostructure were investigated by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) measurements. Especially, XPS and AES depth profiling was used to analyze the compositions and structures in the interface regions of the as-grown and post-annealed CeO2/Si. It was found that there was no silicon oxide in the interface region of the as-grown sample but silicon oxide in the post-annealed sample. The reason for obtaining such high quality heterostructure mainly depends on the absence of silicon oxide in the surface at the beginning of the deposition. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Low temperature (similar to 500 degrees C) growth properties of Si1-xGex by disilane and solid-Ge molecular beam epitaxy have been studied with an emphasis on surface morphology and growth kinetics. It is found that low-temperature growth(<500 degrees C) is in layer-by-layer mode and atomically-smooth surfaces have been obtained in as-grown samples with large Ge composition (>0.5). Ge composition dependence on substrate temperature, Ge cell temperature and disilane flow rate have been investigated. It is found that in low-temperature growth (less than or equal to 500 degrees C) and under large disilane flux, Ge composition increases with the increase of Ge flux and further increase of Ge flux leads to the saturation of Ge composition. Similar compositional dependence has been found at different growth temperatures. The saturated composition increases with the decrease of substrate temperature. The results can be explained if H desorption is assumed to occur from both Si and Ge monohydrides without diffusional exchange and the presence of Ge enhances H desorption on a Si site. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Atomic force microscopy (AFM) measurements of nanometer-sized islands formed by 2 monolayers of InAs by molecular beam epitaxy have been carried out and the scan line of individual islands was extracted from raw AFM data for investigation. It is found that the base widths of nanometer-sized islands obtained by AFM are not reliable due to the finite size and shape of the contacting probe. A simple model is proposed to analyze the deviation of the measured value From the real value of the base width of InAs islands. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
It is believed that the highly dislocated region near the GaN/sapphire interface is a degenerate layer. In this paper a direct evidence for such a proposal is presented. By inserting a buried AlxGa1-xN (x > 0.5) isolating layer to separate the interface region from the bulk region, the background electron concentration can be significantly reduced, while care must be taken to guarantee that there is no degrading of Hall mobility when choosing the thickness of the isolating layer. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Using NH3 cracked on the growing surface as the nitrogen precursor, an AlGaN/GaN modulation-doped (MD) heterostructure without a buffer layer was grown on a nitridated sapphire substrate in a home-made molecular beam epitaxy (MBE) system. Though the Al composition is as low as 0.036, as deduced from photoluminescence (PL) measurements, the AlGaN barrier layer can be an efficient carrier supplier for the formation of a two-dimensional electron gas (2DEG) at the heterointerface. The 2DEG characteristics are verified by the variable temperature Hall measurements down to 7 K. Using a parallel conduction model, we estimate the actual mobility of the 2DEG to be 1100 cm(2)/V s as the sheet carrier density to be 1.0 x 10(12) cm(-2). Our results show that the AlGaN/GaN system is very suitable for the fabrication of high electron mobility transistors (HEMTs). (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
High quality YSi1.7 layers (chi(min) of Y is 3.5%) have been formed by 60 keV Y ion implantation in Si (111) substrates to a dose of 1.0 x 10(17)/cm(2) at 450 degrees C using channeled ion beam synthesis (CIBS). It shows that, compared to the conventional nonchanneled ion beam synthesis, CIBS is beneficial in forming YSi1.7 layers with better quality due to the lower defect density created in the implanted layer. Rutherford backscattering/channeling and x-ray diffraction have been used to study the structure and the strain of the YSi1.7 layers. The perpendicular and parallel elastic strains of the YSi1.7 epilayer are e(perpendicular to) = -0.67% +/- 0.02% and e(parallel to) = +1.04% +/- 0.08%. The phenomenon that a nearly zero mismatch of the YSi1.7/Si (111) system results in a nonpseudomorphic epilayer with a rather large parallel strain relative to the Si substrate (epsilon(parallel to) = +1.09%) is explained, and the model is further used to explain the elastic strain of epitaxial ErSi1.7 and GdSi1.7 rare-earth silicides. (C) 1998 American Vacuum Society.
Resumo:
Photoluminescence (PL) investigation was carried out on GaInP/GaAs multiple quantum wells structures grown on (001) and (311) B surfaces of GaAs by gas source molecular beam epitaxy. Superlattice structures of GaAs/GaInP grown on (001) GaAs substrate were also studied in comparison. Deep-level luminescence was seen to dominate the PL spectra from the quantum wells and superlattice structures that were grown on (001) GaAs substrate. In contrast, superior optical properties were exhibited in the same structures grown on (311) B GaAs surfaces. The results suggested that GaAs/GaInP quantum well structures on (311) B oriented substrates could efficiently suppress the deep-level emissions, result in narrower PL peaks indicating smooth interfaces. (C) 1998 American Institute of Physics.