908 resultados para BRCA1, DNA damage, genome stability, DNA repair, mRNA splicing
Resumo:
Pre-mRNA splicing is among the last known nuclear events before export of mature mRNA to the cytoplasm. At present, it is not known whether splicing and mRNA export are biochemically coupled processes. In this study, we have injected pre-mRNAs containing a single intron or the same mRNAs lacking an intron (Δi-mRNAs) into Xenopus oocyte nuclei. We find that the spliced mRNAs are exported much more rapidly and efficiently than the identical Δi-mRNAs. Moreover, competition studies using excess Δi-mRNA indicate that different factor(s) are involved in the inefficient export of Δi-mRNA vs. the efficient export of spliced mRNA. Consistent with this conclusion, spliced mRNA and Δi-mRNA, though identical in sequence, are assembled into different messenger ribonucleoprotein particles (mRNP) in vitro. Strikingly, the mRNA in the spliced mRNP, but not in the Δi-mRNP, is exported rapidly and efficiently. We conclude that splicing generates a specific nucleoprotein complex that targets mRNA for export. Our results, revealing a link between splicing and efficient mRNA export, may explain the reports that an intron is required for efficient expression of many protein-coding genes in metazoans.
Resumo:
We describe a genome-wide characterization of mRNA transcript levels in yeast grown on the fatty acid oleate, determined using Serial Analysis of Gene Expression (SAGE). Comparison of this SAGE library with that reported for glucose grown cells revealed the dramatic adaptive response of yeast to a change in carbon source. A major fraction (>20%) of the 15,000 mRNA molecules in a yeast cell comprised differentially expressed transcripts, which were derived from only 2% of the total number of ∼6300 yeast genes. Most of the mRNAs that were differentially expressed code for enzymes or for other proteins participating in metabolism (e.g., metabolite transporters). In oleate-grown cells, this was exemplified by the huge increase of mRNAs encoding the peroxisomal β-oxidation enzymes required for degradation of fatty acids. The data provide evidence for the existence of redox shuttles across organellar membranes that involve peroxisomal, cytoplasmic, and mitochondrial enzymes. We also analyzed the mRNA profile of a mutant strain with deletions of the PIP2 and OAF1 genes, encoding transcription factors required for induction of genes encoding peroxisomal proteins. Induction of genes under the immediate control of these factors was abolished; other genes were up-regulated, indicating an adaptive response to the changed metabolism imposed by the genetic impairment. We describe a statistical method for analysis of data obtained by SAGE.
Resumo:
Many genes have been described and characterized that have alternative polyadenylation signals at the 3′-end of their pre-mRNAs. Many of these same messages also contain destabilization motifs responsible for rapid degradation of the mRNA. Polyadenylation site selection can thus determine the stability of an mRNA. Fully modified 2′-O-methoxy ethyl/phosphorothioate oligonucleotides that hybridize to the 3′-most polyadenylation site or signal of E-selectin were able to inhibit polyadenylation at this site and redirect it to one of two upstream cryptic sites. The shorter transcripts produced after antisense treatment have fewer destabilization sequences, increased mRNA stability and altered protein expression. This study demonstrates that antisense oligonucleotides can be successfully employed to redirect polyadenylation. This is the first demonstration of the use of oligonucleotides to increase, rather than decrease, abundance of a message.
Resumo:
The infected cell protein no. 0 (ICP0), the product of the alpha 0 gene, and an important herpes simplex virus 1 regulatory protein is encoded by three exons. We report that intron 1 forms a family of four stable nonpolyadenylylated cytoplasmic RNAs sharing a common 5' end but differing in 3' ends. The 5' and 3' ends correspond to the accepted splice donor and four splice acceptor sites within the mapped intron domain. The most distant splice acceptor site yields the mRNA encoding the 775-aa protein known as ICP0. The mRNAs resulting from the use of alternative splice acceptor sites were also present in the cytoplasm of infected cells and would be predicted to encode proteins of 152 (ICP0-B), 87 (ICP0-C), and 90 (ICP0-D) amino acids, respectively. Both the stability of the alpha 0 mRNA and the utilization of at least one splice acceptor site was regulated by ICP22 and or US1.5 protein inasmuch as cells infected with a mutant from which these genes had been deleted accumulated smaller amounts of alpha 0 mRNA than would be predicted from the amounts of accumulated intron RNAs. In addition, one splice acceptor site was at best underutilized. These results indicate that both the splicing pattern and longevity of alpha 0 mRNA are regulated. These and other recent examples indicate that herpes simplex virus 1 regulates its own gene expression and that of the infected cells through control of mRNA splicing and longevity.
Resumo:
Protein coding genes are comprised of protein-coding exons and non-protein-coding introns. The process of splicing involves removal of the introns and joining of the exons to form a mature messenger RNA, which subsequently undergoes translation into polypeptide. The spliceosome is a large, RNA/protein assembly of five small nuclear RNAs as well as over 300 proteins, which catalyzes intron removal and exon ligation. The selection of specific exons for inclusion in the mature messenger RNA is spatio-temporally regulated and results in production of an enormous diversity of polypeptides from a single gene locus. This phenomenon, known as alternative splicing, is regulated, in part, by protein splicing factors, which target the spliceosome to exon/intron boundaries. The first part of my dissertation (Chapters II and III) focuses on the discovery and characterization of the 45 kilodalton FK506 binding protein (FKBP45), which I discovered in the silk moth, Bombyx mori, as a U1 small nuclear RNA binding protein. This protein family binds the immunosuppressants FK506 and rapamycin and contains peptidyl-prolyl cis-trans isomerase activity, which converts polypeptides from cis to trans about a proline residue. This is the first time that an FKBP has been identified in the spliceosome. The second section of my dissertation (Chapters IV, V, VI and VII) is an investigation of the potential role of small nuclear RNA sequence variants in the control of splicing. I identified 46 copies of small nuclear RNAs in the 6X whole genome shotgun of the Bombyx mori p50T strain. These variants may play a role in differential binding of specific proteins that mediate alternative splicing. Along these lines, further investigation of U2 snRNA sequence variants in Bombyx mori demonstrated that some U2 snRNAs preferentially assemble into high molecular weight spliceosomal complexes over others. Expression of snRNA variants may represent another mechanism by which the cell is able to fine tune the splicing process.
Resumo:
The importance of non-destructive techniques (NDT) in structural health monitoring programmes is being critically felt in the recent times. The quality of the measured data, often affected by various environmental conditions can be a guiding factor in terms usefulness and prediction efficiencies of the various detection and monitoring methods used in this regard. Often, a preprocessing of the acquired data in relation to the affecting environmental parameters can improve the information quality and lead towards a significantly more efficient and correct prediction process. The improvement can be directly related to the final decision making policy about a structure or a network of structures and is compatible with general probabilistic frameworks of such assessment and decision making programmes. This paper considers a preprocessing technique employed for an image analysis based structural health monitoring methodology to identify sub-marine pitting corrosion in the presence of variable luminosity, contrast and noise affecting the quality of images. A preprocessing of the gray-level threshold of the various images is observed to bring about a significant improvement in terms of damage detection as compared to an automatically computed gray-level threshold. The case dependent adjustments of the threshold enable to obtain the best possible information from an existing image. The corresponding improvements are observed in a qualitative manner in the present study.
Resumo:
The importance of RNA as a mediator of genetic information is widely appreciated. RNA molecules also participate in the regulation of various post-transcriptional activities, such as mRNA splicing, editing, RNA stability and transport. Their regulatory roles for these activities are highly dependent on finely tuned associations with cognate proteins. The RNA recognition motif (RRM) is an ancient RNA binding module that participates in hundreds of essential activities where specific RNA recognition is required. We have applied phage display and site-directed mutagenesis to dissect principles of RRM-controlled RNA recognition. The model systems we are investigating are U1A and CUG-BP1. In this dissertation, the molecular basis of the binding affinity of U1A-RNA beyond individual contacts was investigated. We have identified and evaluated the contributions of the local cooperativity formed by three neighboring residues (Asn15, Asn16 and Glu19) to the stability of the U1A-RNA complex. The localized cooperative network was mapped by double-mutant cycles and explored using phage display. We also showed that a cluster of these residues forms a “hot spot” on the surface of U1A; a single substitution at position 19 with Gln or His can alter the binding properties of U1A to recognize a non-cognate G4U RNA. Finally, we applied a deletion analysis of CUG-BP1 to define the contributions of individual RRMs and RRM combinations to the stability of the complex formed between CUG-BP1 and the GRE sequence. The preliminary results showed RRM3 of CUG-BP1 is a key domain for RNA binding. It possibly binds to the GRE sequence cooperatively with RRM2 of CUG-BP1. RRM1 of CUG-BP1 is not required for GRE recognition, but may be important for maintaining the stability of the full-length CUG-BP1.
Ghrelin gene-related peptides : multifunctional endocrine/autocrine modulators in health and disease
Resumo:
Ghrelin is a multi-functional peptide hormone which affects various processes including growth hormone and insulin release, appetite regulation, gut motility, metabolism and cancer cell proliferation. Ghrelin is produced in the stomach and in other normal and pathological cell types. It may act as an endocrine or autocrine/paracrine factor. The ghrelin gene encodes a precursor protein, preproghrelin, from which ghrelin and other potentially active peptides are derived by alternative mRNA splicing and/or proteolytic processing. The metabolic role of the peptide obestatin, derived from the preproghrelin C-terminal region, is controversial. However, it has direct effects on cancer cell proliferation. The regulation of ghrelin expression and the mechanisms through which the peptide products arise are unclear. We have recently re-examined the organisation of the ghrelin gene and identified several novel exons and transcripts. One transcript, which lacks the ghrelin-coding region of preproghrelin, contains the coding sequence of obestatin. Furthermore, we have identified an overlapping gene on the antisense strand of ghrelin, GHRLOS, which generates transcripts that may function as non-coding regulatory RNAs or code for novel, short bioactive peptides. The identification of these novel ghrelin-gene related transcripts and peptides raises critical questions regarding their physiological function and their role in obesity, diabetes and cancer.
Resumo:
The PRP17 gene product is required for the second step of pre-mRNA splicing reactions. The C-terminal half of this protein bears four repeat units with homology to the beta transducin repeat. Missense mutations in three temperature-sensitive prp17 mutants map to a region in the N-terminal half of the protein. We have generated, in vitro, 11 missense alleles at the beta transducin repeat units and find that only one affects function in vivo. A phenotypically silent missense allele at the fourth repeat unit enhances the slow-growing phenotype conferred by an allele at the third repeat, suggesting an interaction between these domains. Although many missense mutations in highly conserved amino acids lack phenotypic effects, deletion analysis suggests an essential role for these units. Only mutations in the N-terminal nonconserved domain of PRP17 are synthetically lethal in combination with mutations in PRP16 and PRP18, two other gene products required for the second splicing reaction. A mutually allele-specific interaction between Prp17 and snr7, with mutations in U5 snRNA, was observed. We therefore suggest that the functional region of Prp17p that interacts with Prp18p, Prp16p, and U5 snRNA is the N terminal region of the protein.
Resumo:
The temperature-sensitive prp24-1 mutation defines a gene product required for the first step in pre-mRNA splicing. PRP24 is probably a component of the U6 snRNP particle. We have applied genetic reversion analysis to identify proteins that interact with PRP24. Spontaneous revertants of the temperature-sensitive (ts) prp24-1 phenotype were analyzed for those that are due to extragenic suppression. We then extended our analysis to screen for suppressors that confer a distinct conditional phenotype. We have identified a temperature-sensitive extragenic suppressor, which was shown by genetic complementation analysis to be allelic to prp21-1. This suppressor, prp21-2, accumulates pre-mRNA at the non-permissive temperature, a phenotype similar to that of prp21-1. prp21-2 completely suppresses the splicing defect and restores in vivo levels of the U6 snRNA in the prp24-1 strain. Genetic analysis of the suppressor showed that prp21-2 is not a bypass suppressor of prp24-1. The suppression of prp24-1 by prp21-2 is gene specific and also allele specific with respect to both the loci. Genetic interactions with other components of the pre-spliceosome have also been studied. Our results indicate an interaction between PRP21, a component of the U2 snRNP, and PRP24, a component of the U6 snRNP. These results substantiate other data showing U2-U6 snRNA interactions.
Resumo:
Inherited retinal diseases are the most common cause of vision loss among the working population in Western countries. It is estimated that ~1 of the people worldwide suffer from vision loss due to inherited retinal diseases. The severity of these diseases varies from partial vision loss to total blindness, and at the moment no effective cure exists. To date, nearly 200 mapped loci, including 140 cloned genes for inherited retinal diseases have been identified. By a rough estimation 50% of the retinal dystrophy genes still await discovery. In this thesis we aimed to study the genetic background of two inherited retinal diseases, X-linked cone-rod dystrophy and Åland Island eye disease. X-linked cone-rod dystrophy (CORDX) is characterized by progressive loss of visual function in school age or early adulthood. Affected males show reduced visual acuity, photophobia, myopia, color vision defects, central scotomas, and variable changes in fundus. The disease is genetically heterogeneous and two disease loci, CORDX1 and CORDX2, were known prior to the present thesis work. CORDX1, located on Xp21.1-11.4, is caused by mutations in the RPGR gene. CORDX2 is located on Xq27-28 but the causative gene is still unknown. Åland Island eye disease (AIED), originally described in a family living in Åland Islands, is a congenital retinal disease characterized by decreased visual acuity, fundus hypopigmentation, nystagmus, astigmatism, red color vision defect, myopia, and defective night vision. AIED shares similarities with another retinal disease, congenital stationary night blindness (CSNB2). Mutations in the L-type calcium channel α1F-subunit gene, CACNA1F, are known to cause CSNB2, as well as AIED-like disease. The disease locus of the original AIED family maps to the same genetic interval as the CACNA1F gene, but efforts to reveal CACNA1F mutations in patients of the original AIED family have been unsuccessful. The specific aims of this study were to map the disease gene in a large Finnish family with X-linked cone-rod dystrophy and to identify the disease-causing genes in the patients of the Finnish cone-rod dystrophy family and the original AIED family. With the help of linkage and haplotype analyses, we could localize the disease gene of the Finnish cone-rod dystrophy family to the Xp11.4-Xq13.1 region, and thus establish a new genetic X-linked cone-rod dystrophy locus, CORDX3. Mutation analyses of candidate genes revealed three novel CACNA1F gene mutations: IVS28-1 GCGTC>TGG in CORDX3 patients, a 425 bp deletion, comprising exon 30 and flanking intronic regions in AIED patients, and IVS16+2T>C in an additional Finnish patient with a CSNB2-like phenotype. All three novel mutations altered splice sites of the CACNA1F gene, and resulted in defective pre-mRNA splicing suggesting altered or absent channel function as a disease mechanism. The analyses of CACNA1F mRNA also revealed novel alternative wt splice variants, which may enhance channel diversity or regulate the overall expression level of the channel. The results of our studies may be utilized in genetic counseling of the families, and they provide a basis for studies on the pathogenesis of these diseases. In the future, the knowledge of the genetic defects may be used in the identification of specific therapies for the patients.
Resumo:
The yeast Bud31 protein, a Prp19 complex (NTC) member, aids spliceosome assembly and thus promotes efficient pre-mRNA splicing. The bud31 null cells show mild budding abnormalities at optimal growth temperatures and, at higher temperatures, have growth defects with aberrant budding. Here we have assessed cell cycle transitions which require Bud31. We find Bud31 facilitates passage through G1-S regulatory point (Start) but is not needed for G2-M transition or for exit from mitosis. To co-relate Bud31 functions in cell division with splicing, we studied the splicing status of transcripts that encode proteins involved in budding. We find Bud31 promotes efficient splicing of only some of these pre-mRNAs, for example, ARP2 and SRC1. Wild type cells have a long and a short isoform of SRC1 mRNA and protein, out of which the shorter mRNA splice variant is predominant. bud31 Delta cells show inefficient SRC1 splicing and entirely lack the shorter SRC1 spliced mRNA isoform. Yeast PRP17, another NTC sub-complex member, is also required for G1-S and G2-M cell cycle transitions. We examined genetic interactions between BUD31 and PRP17. While both factors were needed for efficient cell cycle dependent gene expression, our data indicate that distinct pre-mRNAs depend on each of these non-essential splicing factors.
Resumo:
Members of the SR family of pre-mRNA splicing factors are phosphoproteins that share a phosphoepitope specifically recognized by monoclonal antibody (mAb) 104. Recent studies have indicated that phosphorylation may regulate the activity and the intracellular localization of these splicing factors. Here, we report the purification and kinetic properties of SR protein kinase 1 (SRPK1), a kinase specific for SR family members. We demonstrate that the kinase specifically recognizes the SR domain, which contains serine/arginine repeats. Previous studies have shown that dephosphorylated SR proteins did not react with mAb 104 and migrated faster in SDS gels than SR proteins from mammalian cells. We show that SRPK1 restores both mobility and mAB 104 reactivity to a SR protein SF2/ASF (splicing factor 2/alternative splicing factor) produced in bacteria, suggesting that SRPK1 is responsible for the generation of the mAb 104-specific phosphoepitope in vivo. Finally, we have correlated the effects of mutagenesis in the SR domain of SF2/ASF on splicing with those on phosphorylation of the protein by SRPK1, suggesting that phosphorylation of SR proteins is required for splicing.
Resumo:
BACKGROUND - : Vascular endothelial cell growth factor plays a pivotal role in angiogenesis via regulating endothelial cell proliferation. The X-box binding protein 1 (XBP1) is believed to be a signal transducer in the endoplasmic reticulum stress response. It is unknown whether there is crosstalk between vascular endothelial cell growth factor signaling and XBP1 pathway.
METHODS AND RESULTS - : We found that vascular endothelial cell growth factor induced the kinase insert domain receptor internalization and interaction through C-terminal domain with the unspliced XBP1 and the inositol requiring enzyme 1 α in the endoplasmic reticulum, leading to inositol requiring enzyme 1 α phosphorylation and XBP1 mRNA splicing, which was abolished by siRNA-mediated knockdown of kinase insert domain receptor. Spliced XBP1 regulated endothelial cell proliferation in a PI3K/Akt/GSK3β/β- catenin/E2F2-dependent manner and modulated the cell size increase in a PI3K/Akt/GSK3β/β-catenin/E2F2-independent manner. Knockdown of XBP1 or inositol requiring enzyme 1 α decreased endothelial cell proliferation via suppression of Akt/GSK3β phosphorylation, β-catenin nuclear translocation, and E2F2 expression. Endothelial cell-specific knockout of XBP1 (XBP1ecko) in mice retarded the retinal vasculogenesis in the first 2 postnatal weeks and impaired the angiogenesis triggered by ischemia. Reconstitution of XBP1 by Ad-XBP1s gene transfer significantly improved angiogenesis in ischemic tissue in XBP1ecko mice. Transplantation of bone marrow from wild-type o XBP1ecko mice could also slightly improve the foot blood reperfusion in ischemic XBP1ecko mice.
CONCLUSIONS - : These results suggest that XBP1 can function via growth factor signaling pathways to regulate endothelial proliferation and angiogenesis.
Resumo:
Myostatin is a negative regulator of muscle mass, and several strategies are being developed to knockdown its expression to improve muscle-wasting conditions. Strategies using antimyostatin-blocking antibodies, inhibitory-binding partners, signal transduction blockers, and RNA interference system (RNAi)-based knockdown have yielded promising results and increased muscle mass in experimental animals. These approaches have, however, a number of disadvantages such as transient effects or adverse immune complications. We report here the use of antisense oligonucleotides (AOs) to manipulate myostatin pre-mRNA splicing and knockdown myostatin expression. Both 2’O-methyl phosphorothioate RNA (2’OMePS) and phosphorodiamidate morpholino oligomers (PMO) led to efficient exon skipping in vitro and in vivo and knockdown of myostatin at the transcript level. The substantial myostatin exon skipping observed after systemic injection of Vivo-PMO into normal mice led to a significant increase in soleus muscle mass as compared to the controls injected with normal saline suggesting that this approach could be feasible to ameliorate muscle-wasting pathologies.