939 resultados para BLOCK-COPOLYMERIZATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

β-Amyloid peptide (Aβ), one of the primary protein components of senile plaques found in Alzheimer disease, is believed to be toxic to neurons by a mechanism that may involve loss of intracellular calcium regulation. We have previously shown that Aβ blocks the fast-inactivating potassium (A) current. In this work, we show, through the use of a mathematical model, that the Aβ-mediated block of the A current could result in increased intracellular calcium levels and increased membrane excitability, both of which have been observed in vitro upon acute exposure to Aβ. Simulation results are compared with experimental data from the literature; the simulations quantitatively capture the observed concentration dependence of the neuronal response and the level of increase in intracellular calcium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mussel byssal threads contain unusual block copolymer-like proteins that combine collagen with flanking domains that resemble silk-fibroin (preCol-D) or elastin (preCol-P). These are distributed in complementary gradients along the length of the threads and as precursors in the mussel foot. We discuss a 76-kDa precursor, preCol-NG, from a cDNA library of the foot where it has no gradient but rather is distributed evenly along the distal to proximal axis. A pepsin-resistant fragment of preCol-NG has been confirmed in byssal threads. Like preCol-D and -P, this protein has a central collagenous domain, flanking domains, an acidic patch, and histidine-rich termini. The flanking domains of preCol-NG resemble the glycine-rich proteins of plant cell walls with tandem XGlyn repeats where X denotes alanine, leucine, or asparagine but not proline. Similarity with the (glycine–alanine) repeats and poly(alanine) runs of arthropod silks also exists. Based on available evidence, a model of preCol axial assembly is proposed in which preCol-NG functions as a mediator between preCol-D/-P molecules. This is consistent with the observed progression of mechanical properties in byssal threads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the ability of Sf-caspase-1 and two mammalian caspases, caspase-1 and caspase-3, to induce apoptosis in Spodoptera frugiperda Sf-21 insect cells. While the transient expression of the pro-Sf-caspase-1 did not induce apoptosis, expression of the pro-domain deleted form, p31, or coexpression of the two subunits of mature Sf-caspase-1, p19 and p12, induced apoptosis in Sf-21 cells. The behavior of Sf-caspase-1 resembled that of the closely related mammalian caspase, caspase-3, and contrasted with that of the mammalian caspase-1, the pro-form of which was active in inducing apoptosis in Sf-21 cells. The baculovirus caspase inhibitor P35 blocked apoptosis induced by active forms of all three caspases. In contrast, members of the baculovirus inhibitor of apoptosis (IAP) family failed to block active caspase-induced apoptosis. However, during viral infection, expression of OpIAP or CpIAP blocked the activation of pro-Sf-caspase-1 and the associated induction of apoptosis. Thus, the mechanism by which baculovirus IAPs inhibit apoptosis is distinct from the mechanism by which P35 blocks apoptosis and involves inhibition of the activation of pro-caspases like Sf-caspase-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phototransduction in Limulus photoreceptors involves a G protein-mediated activation of phospholipase C (PLC) and subsequent steps involving InsP3-mediated release of intracellular Ca2+. While exploring the role of calmodulin in this cascade, we found that intracellular injection of Ca2+/calmodulin-binding peptides (CCBPs) strongly inhibited the light response. By chemically exciting the cascade at various stages, we found the primary target of this effect was not in late stages of the cascade but rather at the level of G protein and PLC. That PLCδ1 contains a calmodulin-like structure raised the possibility that PLC might be directly affected by CCBPs. To test this possibility, in vitro experiments were conducted on purified PLC. The activity of this enzyme was strongly inhibited by CCBPs and also inhibited by calmodulin itself. Our results suggest that the calmodulin-like region of PLC has an important role in regulating this enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suppression of cardiac voltage-gated Na+ currents is probably one of the important factors for the cardioprotective effects of the n-3 polyunsaturated fatty acids (PUFAs) against lethal arrhythmias. The α subunit of the human cardiac Na+ channel (hH1α) and its mutants were expressed in human embryonic kidney (HEK293t) cells. The effects of single amino acid point mutations on fatty acid-induced inhibition of the hH1α Na+ current (INa) were assessed. Eicosapentaenoic acid (EPA, C20:5n-3) significantly reduced INa in HEK293t cells expressing the wild type, Y1767K, and F1760K of hH1α Na+ channels. The inhibition was voltage and concentration-dependent with a significant hyperpolarizing shift of the steady state of INa. In contrast, the mutant N406K was significantly less sensitive to the inhibitory effect of EPA. The values of the shift at 1, 5, and 10 μM EPA were significantly smaller for N406K than for the wild type. Coexpression of the β1 subunit and N406K further decreased the inhibitory effects of EPA on INa in HEK293t cells. In addition, EPA produced a smaller hyperpolarizing shift of the V1/2 of the steady-state inactivation in HEK293t cells coexpressing the β1 subunit and N406K. These results demonstrate that substitution of asparagine with lysine at the site of 406 in the domain-1-segment-6 region (D1-S6) significantly decreased the inhibitory effect of PUFAs on INa, and coexpression with β1 decreased this effect even more. Therefore, asparagine at the 406 site in hH1α may be important for the inhibition by the PUFAs of cardiac voltage-gated Na+ currents, which play a significant role in the antiarrhythmic actions of PUFAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mosquito midgut plays a central role in the sporogonic development of malaria parasites. We have found that polyclonal sera, produced against mosquito midguts, blocked the passage of Plasmodium falciparum ookinetes across the midgut, leading to a significant reduction of infections in mosquitoes. Anti-midgut mAbs were produced that display broad-spectrum activity, blocking parasite development of both P. falciparum and Plasmodium vivax parasites in five different species of mosquitoes. In addition to their parasite transmission-blocking activity, these mAbs also reduced mosquito survivorship and fecundity. These results reveal that mosquito midgut-based antibodies have the potential to reduce malaria transmission in a synergistic manner by lowering both vector competence, through transmission-blocking effects on parasite development, and vector abundance, by decreasing mosquito survivorship and egg laying capacity. Because the intervention can block transmission of different malaria parasite species in various species of mosquitoes, vaccines against such midgut receptors may block malaria transmission worldwide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteinase inhibitor I (Inh I) and proteinase inhibitor II (Inh II) from potato tubers are effective proteinase inhibitors of chymotrypsin and trypsin. Inh I and Inh II were shown to suppress irradiation-induced transformation in mouse embryo fibroblasts suggesting that they possess anticarcinogenic characteristics. We have previously demonstrated that Inh I and Inh II could effectively block UV irradiation-induced activation of transcription activator protein 1 (AP-1) in mouse JB6 epidermal cells, which mechanistically may explain their anticarcinogenic actions. In the present study, we investigated the effects of Inh I and Inh II on the expression and composition pattern of the AP-1 complex following stimulation by UV B (UVB) irradiation in the JB6 model. We found that Inh I and Inh II specifically inhibited UVB-induced AP-1, but not NFκB, activity in JB6 cells. Both Inh I and Inh II up-regulated AP-1 constituent proteins, JunD and Fra-2, and suppressed c-Jun and c-Fos expression and composition in bound AP-1 in response to UVB stimulation. This regulation of the AP-1 protein compositional pattern in response to Inh I or Inh II may be critical for the inhibition of UVB-induced AP-1 activity by these agents found in potatoes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-linked hypohidrotic ectodermal dysplasia (XLHED) is a heritable disorder of the ED-1 gene disrupting the morphogenesis of ectodermal structures. The ED-1 gene product, ectodysplasin-A (EDA), is a tumor necrosis factor (TNF) family member and is synthesized as a membrane-anchored precursor protein with the TNF core motif located in the C-terminal domain. The stalk region of EDA contains the sequence -Arg-Val-Arg-Arg156-Asn-Lys-Arg159-, representing overlapping consensus cleavage sites (Arg-X-Lys/Arg-Arg↓) for the proprotein convertase furin. Missense mutations in four of the five basic residues within this sequence account for ≈20% of all known XLHED cases, with mutations occurring most frequently at Arg156, which is shared by the two consensus furin sites. These analyses suggest that cleavage at the furin site(s) in the stalk region is required for the EDA-mediated cell-to-cell signaling that regulates the morphogenesis of ectodermal appendages. Here we show that the 50-kDa EDA parent molecule is cleaved at -Arg156Asn-Lys-Arg159↓- to release the soluble C-terminal fragment containing the TNF core domain. This cleavage appears to be catalyzed by furin, as release of the TNF domain was blocked either by expression of the furin inhibitor α1-PDX or by expression of EDA in furin-deficient LoVo cells. These results demonstrate that mutation of a functional furin cleavage site in a developmental signaling molecule is a basis for human disease (XLHED) and raise the possibility that furin cleavage may regulate the ability of EDA to act as a juxtacrine or paracrine factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the properties of r-eag voltage-activated potassium channels in a stably transfected human embryonic kidney cell line. It was found that r-eag channels are rapidly and reversibly inhibited by a rise in intracellular calcium from 30 to 300 nM. The inhibition does not appear to depend on the activity of calcium-dependent kinases and phosphatases. The effect of calcium on r-eag channel activity was studied in inside-out membrane patches. Calcium inhibited r-eag channel activity with a mean IC50 of 67 nM. Activation of muscarinic receptors, generating calcium oscillations in the transfected cells, induced a synchronous inhibition of r-eag mediated outward currents. This shows that calcium can mediate r-eag current inhibition following muscarinic receptor activation. The data indicate that r-eag channels are calcium-inhibitable voltage-activated potassium channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N-Methyl-D-aspartate (NMDA) receptors are blocked at hyperpolarizing potentials by extracellular Mg ions. Here we present a detailed kinetic analysis of the Mg block in recombinant wild-type and mutant NMDA receptors. We find that the Mg binding site is the same in the wild-type and native hippocampal NMDA receptor channels. In the mutant channels, however, Mg ions bind with a 10-fold lower affinity. On the basis of these results, we propose that the energy well at the Mg binding site in the mutants is shallow and the binding is unstable because of an increase in the rate of dissociation. We postulate that the dipole formed by the amide group of asparagine 614 of the epsilon 1 subunit contributes to the structure of the binding site but predict that additional ligands will be involved in coordinating Mg ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage-gated Na+ channels are the molecular targets of local anesthetics, class I antiarrhythmic drugs, and some anticonvulsants. These chemically diverse drugs inhibit Na+ channels with complex voltage- and frequency-dependent properties that reflect preferential drug binding to open and inactivated channel states. The site-directed mutations F1764A and Y1771A in transmembrane segment IVS6 of type IIA Na+ channel alpha subunits dramatically reduce the affinity of inactivated channels for the local anesthetic etidocaine. In this study, we show that these mutations also greatly reduce the sensitivity of Na+ channels to state-dependent block by the class Ib antiarrhythmic drug lidocaine and the anticonvulsant phenytoin and, to a lesser extent, reduce the sensitivity to block by the class Ia and Ic antiarrhythmic drugs quinidine and flecainide. For lidocaine and phenytoin, which bind preferentially to inactivated Na+ channels, the mutation F1764A reduced the affinity for binding to the inactivated state 24.5-fold and 8.3-fold, respectively, while Y1771A had smaller effects. For quinidine and flecainide, which bind preferentially to the open Na+ channels, the mutations F1764A and Y1771A reduced the affinity for binding to the open state 2- to 3-fold. Thus, F1764 and Y1771 are common molecular determinants of state-dependent binding of diverse drugs including lidocaine, phenytoin, flecainide, and quinidine, suggesting that these drugs interact with a common receptor site. However, the different magnitude of the effects of these mutations on binding of the individual drugs indicates that they interact in an overlapping, but nonidentical, manner with a common receptor site. These results further define the contributions of F1764 and Y1771 to a complex drug receptor site in the pore of Na+ channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mg2+ ions block N-methyl-D-aspartate (NMDA) channels by entering the pore from either the extracellular or the cytoplasmic side of the membrane in a voltage-dependent manner. We have used these two different block phenomena to probe the structure of the subunits forming NMDA channels. We have made several amino acid substitutions downstream of the Q/R/N site in the TMII region of both NR1 and NR2A subunits. Mutant NR1 subunits were coexpressed with wild-type NR2A subunits and vice versa in Xenopus oocytes. We found that individually mutating the first two amino acid residues downstream to the Q/R/N site affects mostly the block by external Mg2+. Mutations of residues five to seven positions downstream of the Q/R/N site do not influence the external Mg2+ block, but clearly influence the block by internal Mg2+. These data add support to the hypothesis that there are two separate binding sites for external and internal Mg2+ block. They also indicate that the C-terminal end of TMII contributes to the inner vestibule of the pore of NMDA channels and thus provide additional evidence that TMII forms a loop that reemerges toward the cytoplasmic side of the membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many stress proteins and their cognates function as molecular chaperones or as components of proteolytic systems. Viral infection can stimulate synthesis of stress proteins and particular associations of viral and stress proteins have been documented. However, demonstrations of functions for stress proteins in viral life cycles are few. We have initiated an investigation of the roles of stress proteins in eukaryotic viral life cycles using as a model the Ty3 retrovirus-like element of Saccharomyces cerevisiae. During stress, Ty3 transposition is inhibited; Ty3 DNA is not synthesized and, although precursor proteins are detected, mature Ty3 proteins and virus-like particles (VLPs) do not accumulate. The same phenotype is observed in the constitutively stressed ssa1 ssa2 mutant, which lacks two cytoplasmic members of the hsp70 family of chaperones. Ty3 VLPs preformed under nonstress conditions are degraded more rapidly if cells are shifted from 30 degrees C to 37 degrees C. These results suggest that Ty3 VLPs are destroyed by cellular stress proteins. Elevated expression of the yeast UBP3 gene, which encodes a protease that removes ubiquitin from proteins, allows mature Ty3 proteins and VLPs to accumulate in the ssa1 ssa2 mutant, suggesting that, at least under stress conditions, ubiquitination plays a role in regulating Ty3 transposition.