881 resultados para B-learning
Resumo:
The cellular prion protein (PrP(c)) has been implicated with the modulation of neuronal apoptosis, adhesion, neurite outgrowth and maintenance which are processes involved in the neocortical development. Malformations of cortical development (MCD) are frequently associated with neurological conditions including mental retardation, autism, and epilepsy. Here we investigated the behavioral performance of female adult PrP(c)-null mice (Prnp(%)) and their wild-type controls (Prnp(+/+)) presenting unilateral polymicrogyria, a MCD experimentally induced by neonatal freeze-lesion in the right hemisphere. injured mice from both genotypes presented similar locomotor activity but Prnp(%) mice showed a tendency to increase anxiety-related responses when compared to Prnp(+/+) animals. Additionally, injured Prnp(%) mice have a poorer performance in the social recognition task than sham-operated and Prnp(%) injured ones. Moreover the step-down inhibitory avoidance task was not affected by the procedure or the genotype of the animals. These data suggest that the genetic deletion of PrP(c) confers increased susceptibility to short-term social memory deficits induced by neonatal freezing model of polymicrogyria in mice. (C) 2008 Published by Elsevier B.V.
Resumo:
T cell activation is a complex process involving many steps and the role played by the non-protein-coding RNAs (ncRNAs) in this phenomenon is still unclear. The non-coding T cells transcript (NTT) is differentially expressed during human T cells activation, but its function is unknown. Here, we detected a 426 m NTT transcript by RT-PCR using RNA of human lymphocytes activated with a synthetic peptide of HIV-1. After cloning, the sense and antisense 426 nt NTT transcripts were obtained by in vitro transcription and were sequenced. We found that both transcripts are highly structured and are able to activate PKR. A striking observation was that the antisense 426 nt NTT transcript is significantly more effective in activating PKR than the corresponding sense transcript. The transcription factor NF-kappa B is activated by PKR through phosphorylation and subsequent degradation of its inhibitor I-kappa B beta. We also found that the antisense 426 nt NTT transcript induces more efficiently the degradation Of I-kappa B beta than the sense transcript. Thus, this study suggests that the role played by NTT in the activation of lymphocytes can be mediated by PKR through NF-kappa B activation. However, the physiological significance of the activity of the antisense 426 nt NTT transcript remains unknown. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Receptor activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) are expressed in apical periodontitis, suggesting a role for these molecules during lesion development. However, the profiles of RANKL/OPG expression in periapical lesions remain unknown. In this study we investigated the patterns of RANKL and OPG mRNA expression by real-time polymerase chain reaction in human periapical granulomas (N = 44) and compared them with sites presenting characteristic bone resorbing activity: healthy (n = 14) and orthodontically stretched and compressed periodontal ligament (n = 26), healthy gingiva (n = 24), chronic gingivitis (n = 32), and chronic periodontitis (n = 34) samples. Both RANKL and OPG mRNA expression was higher in periapical granulomas when compared with healthy periodontal ligament. Distinct patterns of RANKL and OPG expression ratio were found in the granulomas and in different physiologic and pathologic conditions, with characteristic bone resorption activity potentially being indicative of the stable or progressive nature of the lesions. Lesions with radiographic image smaller than 5 mm showed higher RANKL/OPG expression than images greater than 5 mm. Periapical granulomas presented heterogeneous patterns of RANKL and OPG expression, ranging from samples with RANKL/OPG ratio similar to that seen in sites with minimal or absent bone resorption to samples with RANKL/OPG expression pattern comparable with active bone resorption sites.