991 resultados para Atypical Small Acinar Proliferation
Resumo:
Translation initiation of hepatitis C virus (HCV) RNA is the initial obligatory step of the viral life cycle, mediated through the internal ribosome entry site (IRES) present in the 5'-untranslated region (UTR). Initiation on the HCV IRES is mediated by multiple structure-specific interactions between IRES RNA and host 40S ribosomal subunit. In the present study we demonstrate that the SLIIIef domain, in isolation from other structural elements of HCV IRES, retain the ability to interact with 40S ribosome subunit. A small RNA SLRef, mimicking the SLIIIef domain was found to interact specifically with human La protein and the ribosomal protein S5 and selectively inhibit HCV RNA translation. More importantly, SLRef RNA showed significant suppression of replication in HCV monocistronic replicon and decrease of negative strand synthesis in HCV cell culture system. Finally, using Sendai virus based virosome, the targeted delivery of SLRef RNA into mice liver succeeded in selectively inhibiting HCV IRES mediated translation in vivo.
Resumo:
Using cell based screening assay, we identified a novel anti-tubulin agent (Z)-5-((5-(4-bromo-3-chlorophenyl)furan-2-yl)methylene)-2-thioxothiazoli din-4-one (BCFMT) that inhibited proliferation of human cervical carcinoma (HeLa) (IC50, 7.2 +/- 1.8 mu M), human breast adenocarcinoma (MCF-7) (IC50, 10.0 +/- 0.5 mu M), highly metastatic breast adenocarcinoma (MDA-MB-231) (IC50, 6.0 +/- 1 mu M), cisplatin-resistant human ovarian carcinoma (A2780-cis) (IC50, 5.8 +/- 0.3 mu M) and multi-drug resistant mouse mammary tumor (EMT6/AR1) (IC50, 6.5 +/- 1 mu M) cells. Using several complimentary strategies, BCFMT was found to inhibit cancer cell proliferation at G2/M phase of the cell cycle apparently by targeting microtubules. In addition, BCFMT strongly suppressed the dynamics of individual microtubules in live MCF-7 cells. At its half maximal proliferation inhibitory concentration (10 mu M), BCFMT reduced the rates of growing and shortening phases of microtubules in MCF-7 cells by 37 and 40%, respectively. Further, it increased the time microtubules spent in the pause (neither growing nor shortening detectably) state by 135% and reduced the dynamicity (dimer exchange per unit time) of microtubules by 70%. In vitro, BCFMT bound to tubulin with a dissociation constant of 8.3 +/- 1.8 mu M, inhibited tubulin assembly and suppressed GTPase activity of microtubules. BCFMT competitively inhibited the binding of BODIPY FL-vinblastine to tubulin with an inhibitory concentration (K-i) of 5.2 +/- 1.5 mu M suggesting that it binds to tubulin at the vinblastine site. In cultured cells, BCFMT-treatment depolymerized interphase microtubules, perturbed the spindle organization and accumulated checkpoint proteins (BubR1 and Mad2) at the kinetochores. BCFMT-treated MCF-7 cells showed enhanced nuclear accumulation of p53 and its downstream p21, which consequently activated apoptosis in these cells. The results suggested that BCFMT inhibits proliferation of several types of cancer cells including drug resistance cells by suppressing microtubule dynamics and indicated that the compound may have chemotherapeutic potential.
Resumo:
Planar imidazolium cation based gemini surfactants 16-Im-n-Im-16], 2Br(-) (where n = 2, 3, 4, 5, 6, 8, 10, and 12), exhibit different morphologies and internal packing arrangements by adopting different supramolecular assemblies in aqueous media depending on their number of spacer methylene units (CH2)(n). Detailed measurements of the small-angle neutron-scattering (SANS) cross sections from different imidazolium-based surfactant micelles in aqueous media (D2O) are reported. The SANS data, containing the information of aggregation behavior of such surfactants in the molecular level, have been analyzed on the basis of the Hayter and Penfold model for the macro ion solution to compute the interparticle structure factor S(Q) taking into account the screened Coulomb interactions between the dimeric surfactant micelles. The characteristic changes in the SANS spectra of the dimeric surfactant with n = 4 due to variation of temperature have also been investigated. These data are then compared with the SANS characterization data of the corresponding gemini micelles containing tetrahedral ammonium ion based polar headgroups. The critical micellar concentration of each surfactant micelle (cmc) has been determined using pyrene as an extrinsic fluorescence probe. The variation of cmc as a function of spacer chain length has been explained in terms of conformational variation and progressive looping of the spacer into the micellar interior upon increasing the n values. Small-angle neutron-scattering (SANS) cross sections from different mixed micelles composed of surfactants with ammonium headgroups, 16-A(0), 16-Am-n-Am-16], 2Br(-) (where n = 4), 16-I-0, and 16-Im-n-Im-16], 2Br(-) (where n = 4), in aqueous media (D2O) have also been analyzed. The aggregate composition matches with that predicted from the ideal mixing model.
Resumo:
In macroscopic and even microscopic structural elements, surface effects can be neglected and classical theories are sufficient. As the structural size decreases towards the nanoscale regime, the surface-to-bulk energy ratio increases and surface effects must be taken into account. In the present work, the terahertz wave dispersion characteristics of a nanoplate are studied with consideration of the surface effects as well as the nonlocal small-scale effects. Nonlocal elasticity theory of plate is used to derive the general differential equation based on equilibrium approach to include those scale effects. Scale and surface property dependent wave characteristic equations are obtained via spectral analysis. For the present study the material properties of an anodic alumina with crystallographic of < 111 > direction are considered. The present analysis shows that the effect of surface properties on the flexural waves of nanoplates is more significant. It can be found that the flexural wavenumbers with surface effects are high as compared to that without surface effects. The scale effects show that the wavenumbers of the flexural wave become highly non-linear and tend to infinite at certain frequency. After that frequency the wave will not propagate and the corresponding wave velocities tend to zero at that frequency (escape frequency). The effects of surface stresses on the wave propagation properties of nanoplate are also captured in the present work. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
RATIONALE The ratio of the measured abundance of 13C18O bonding CO2 to its stochastic abundance, prescribed by the delta 13C and delta 18O values from a carbonate mineral, is sensitive to its growth temperature. Recently, clumped-isotope thermometry, which uses this ratio, has been adopted as a new tool to elucidate paleotemperatures quantitatively. METHODS Clumped isotopes in CO2 were measured with a small-sector isotope ratio mass spectrometer. CO2 samples digested from several kinds of calcium carbonates by phosphoric acid at 25 degrees C were purified using both cryogenic and gas-chromatographic separations, and their isotopic composition (delta 13C, delta 18O, Delta 47, Delta 48 and Delta 49 values) were then determined using a dual-inlet Delta XP mass spectrometer. RESULTS The internal precisions of the single gas Delta 47 measurements were 0.005 and 0.02 parts per thousand (1 SE) for the optimum and the routine analytical conditions, respectively, which are comparable with those obtained using a MAT 253 mass spectrometer. The long-term variations in the Delta 47 values for the in-house working standard and the heated CO2 gases since 2007 were close to the routine, single gas uncertainty while showing seasonal-like periodicities with a decreasing trend. Unlike the MAT 253, the Delta XP did not show any significant relationship between the Delta 47 and delta 47 values. CONCLUSIONS The Delta XP gave results that were approximately as precise as those of the MAT 253 for clumped-isotope analysis. The temporal stability of the Delta XP seemed to be lower, although an advantage of the Delta XP was that no dependency of delta 47 on Delta 47 was found. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Recently, we have demonstrated that the protease domain of NS3 alone can bind specifically to hepatitis C virus (HCV) internal ribosome entry site (IRES) near the initiator AUG, dislodges human La protein and inhibits translation in favor of viral RNA replication. Here, by using a computational approach, the contact points of the protease on the HCV IRES were putatively mapped. A 30-mer NS3 peptide was designed from the predicted RNA-binding region that retained RNA-binding ability and also inhibited IRES-mediated translation. This peptide was truncated to 15 mer and this also demonstrated ability to inhibit HCV RNA-directed translation as well as replication. More importantly, its activity was tested in an in vivo mouse model by encapsulating the peptide in Sendai virus virosomes followed by intravenous delivery. The study demonstrates for the first time that the HCV NS3-IRES RNA interaction can be selectively inhibited using a small peptide and reports a strategy to deliver the peptide into the liver.
Resumo:
The CDC73 gene is mutationally inactivated in hereditary and sporadic parathyroid tumors. It negatively regulates beta-catenin, cyclin D1, and c-MYC. Down-regulation of CDC73 has been reported in breast, renal, and gastric carcinomas. However, the reports regarding the role of CDC73 in oral squamous cell carcinoma (OSCC) are lacking. In this study we show that CDC73 is down-regulated in a majority of OSCC samples. We further show that oncogenic microRNA-155 (miR-155) negatively regulates CDC73 expression. Our experiments show that the dramatic up-regulation of miR-155 is an exclusive mechanism for down-regulation of CDC73 in a panel of human cell lines and a subset of OSCC patient samples in the absence of loss of heterozygosity, mutations, and promoter methylation. Ectopic expression of miR-155 in HEK293 cells dramatically reduced CDC73 levels, enhanced cell viability, and decreased apoptosis. Conversely, the delivery of a miR-155 antagonist (antagomir-155) to KB cells overexpressing miR-155 resulted in increased CDC73 levels, decreased cell viability, increased apoptosis, and marked regression of xenografts in nude mice. Cotransfection of miR-155 with CDC73 in HEK293 cells abrogated its pro-oncogenic effect. Reduced cell proliferation and increased apoptosis of KB cells were dependent on the presence or absence of the 3'-UTR in CDC73. In summary, knockdown of CDC73 expression due to overexpression of miR-155 not only adds a novelty to the list of mechanisms responsible for its down-regulation in different tumors, but the restoration of CDC73 levels by the use of antagomir-155 may also have an important role in therapeutic intervention of cancers, including OSCC.
Resumo:
In the design of practical web page classification systems one often encounters a situation in which the labeled training set is created by choosing some examples from each class; but, the class proportions in this set are not the same as those in the test distribution to which the classifier will be actually applied. The problem is made worse when the amount of training data is also small. In this paper we explore and adapt binary SVM methods that make use of unlabeled data from the test distribution, viz., Transductive SVMs (TSVMs) and expectation regularization/constraint (ER/EC) methods to deal with this situation. We empirically show that when the labeled training data is small, TSVM designed using the class ratio tuned by minimizing the loss on the labeled set yields the best performance; its performance is good even when the deviation between the class ratios of the labeled training set and the test set is quite large. When the labeled training data is sufficiently large, an unsupervised Gaussian mixture model can be used to get a very good estimate of the class ratio in the test set; also, when this estimate is used, both TSVM and EC/ER give their best possible performance, with TSVM coming out superior. The ideas in the paper can be easily extended to multi-class SVMs and MaxEnt models.
Resumo:
Recently, Ebrahimi and Fragouli proposed an algorithm to construct scalar network codes using small fields (and vector network codes of small lengths) satisfying multicast constraints in a given single-source, acyclic network. The contribution of this paper is two fold. Primarily, we extend the scalar network coding algorithm of Ebrahimi and Fragouli (henceforth referred to as the EF algorithm) to block network-error correction. Existing construction algorithms of block network-error correcting codes require a rather large field size, which grows with the size of the network and the number of sinks, and thereby can be prohibitive in large networks. We give an algorithm which, starting from a given network-error correcting code, can obtain another network code using a small field, with the same error correcting capability as the original code. Our secondary contribution is to improve the EF Algorithm itself. The major step in the EF algorithm is to find a least degree irreducible polynomial which is coprime to another large degree polynomial. We suggest an alternate method to compute this coprime polynomial, which is faster than the brute force method in the work of Ebrahimi and Fragouli.
Resumo:
The Wheeler-Feynman (WF) absorber theory of radiation though no more of interest in explaining self interaction of an electron, can be very useful in today's research in small scale optical systems. The significance of the WF absorber is the use of time-symmetrical solution of Maxwell's equations as opposed to only the retarded solution. The radiative coupling of emitters to nano wires in the near field and change in their lifetimes due to small mode volume enclosures have been elucidated with the retarded solutions before. These solutions have also been shown to agree with quantum electrodynamics, thus allowing for classical electromagnetic approaches in such problems. It is here assumed that the radiative coupling of the emitter with a body is in proportion to its contribution to the classical force of radiative reaction as derived in the WF absorber theory. Representing such nano structures as a partial WF absorber acting on the emitter makes the computations considerably easier than conventional electromagnetic solutions for full boundary conditions.
Resumo:
Despite considerable research to develop carbon based materials for biomedical applications, the toxicity of carbon remains a major concern. In order to address this issue as well as to investigate the cell fate processes of neural cells from the perspective of neural tissue engineering applications, the in vitro cytocompatibility of polyacrylonitrile (PAN) derived continuous carbon nanofibers and PAN derived carbon thin films were investigated both quantitatively and qualitatively using in vitro biochemical assays followed by extensive flow cytometry analysis. The experimental results of Schwann cell fate, i.e. cell proliferation, cell metabolic activity and cell apoptosis on amorphous carbon substrates are discussed in reference to the time dependent evolution of intracellular oxidative stress. Apart from providing evidence that an electrospun carbon nanofibrous substrate can physically guide the cultured Schwann cells, this study suggested that continuous carbon nanofibers and amorphous carbon films are not cytotoxic in vitro and do not significantly induce apoptosis of Schwann cells, but in fact even facilitate their proliferation and growth.
Resumo:
In designing and developing various biomaterials, the influence of substrate properties, like surface topography, stiffness and wettability on the cell functionality has been investigated widely. However, such study to probe into the influence of the substrate conductivity on cell fate processes is rather limited. In order to address this issue, spark plasma sintered HA-CaTiO3 (Hydroxyapatite-Calcium titanate) has been used as a model material system to showcase the effect of varying conductivity on cell functionality. Being electroactive in nature, mouse myoblast cells (C2C12) were selected as a model cell line in this study. It was inferred that myoblast adhesion/growth systematically increases with substrate conductivity due to CaTiO3 addition to HA. Importantly, parallel arrangement of myoblast cells on higher CaTiO3 containing substrates indicate that self-adjustable cell patterning can be achieved on conductive biomaterials. Furthermore, enhanced myoblast assembly and myotube formation were recorded after 5 days of serum starvation. Overall, the present study conclusively establishes the positive impact of the substrate conductivity towards cell proliferation and differentiation as well as confirms the efficacy of HA-CaTiO3 biocomposites as conductive platforms to facilitate the growth, orientation and fusion of myoblasts, even when cultured in the absence of external electric field.
Resumo:
PCAF (KAT2B) belongs to the GNAT family of lysine acetyltransferases (KAT) and specifically acetylates the histone H3K9 residue and several nonhistone proteins. PCAF is also a transcriptional coactivator. Due to the lack of a PCAF KAT-specific small molecule inhibitor, the exclusive role of the acetyltransferase activity of PCAF is not well understood. Here, we report that a natural compound of the hydroxybenzoquinone class, embelin, specifically inhibits H3Lys9 acetylation in mice and inhibits recombinant PCAF-mediated acetylation with near complete specificity in vitro. Furthermore, using embelin, we have identified the gene networks that are regulated by PCAF during muscle differentiation, further highlighting the broader regulatory functions of PCAF in muscle differentiation in addition to the regulation via MyoD acetylation.
Resumo:
In the search for more efficacious and less toxic cancer drugs, the tumor suppressor p53 protein has long been a desirable therapeutic target. In the recent past, few independent studies have demonstrated that the antitumor activity of wild-type p53 can be restored in cancer cells harboring mutant form of p53 using small molecule activators. In this study, we describe a novel small molecule MPK-09, which is selective and highly potent against allele specific p53 mutations mainly, R175H, R249S, R273H, R273C, and E285K. Except E285K, all other mutations tested are among the six ``hot spot'' p53 mutations reported in majority of human cancer. Furthermore, our study conclusively demonstrates that the apoptotic activity of the small molecule MPK-09 against cancer cells harboring R273C and E285K mutations is due to restoration of the wild-type conformation to the corresponding mutant form of p53.