980 resultados para Asymptotic stability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crack paths in an elastic layer on top of a substrate are considered. Crack growth is initiated from an edge crack in the layer. The plane of the initially straight crack forms an angle to the free surface. The load consists of a pair of forces applied at the crack mouth and parallel to the interface. Crack paths are calculated using a boundary element method. Crack growth is assumed to proceed along a path for which the mode II stress intensity factor vanishes. The inclination and the length of the initial crack are varied. The effect of two different substrates on the crack path evolution is demonstrated. A crack path initially leading perpendicularly to the interface is shown to be directionally unstable for a rigid substrate. Irrespective of its initial angle, the crack does not reach the interface, but reaches the free surface if the layer is infinitely long. At finite layer length the crack reaches the upper free surface if the initial crack inclination to the surface is small enough. For an inextendable flexible substrate, on the other hand, the crack reaches the interface if its initial inclination is large enough. For the flexible substrate an unstable path parallel with the sides of an infinitely long layer is identified. The results are compared with experimental results and discussed in view of characterisation of directionally unstable crack paths. The energy release rate for an inclined edge crack is determined analytically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The velocity distribution between two sidewalls is; M-shaped for the MHD channel flows with rectangular cross section and thin conducting walls in a strong transverse magnetic field. Assume that the dimensionless numbers R(m) much less than 1, M, N much greater than 1, and sigma

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A complete development for the higher-order asymptotic solutions of the crack tip fields and finite element calculations for mode I loading of hardening materials in plane strain are performed. The results show that in the higher-order asymptotic solution (to the twentieth order), only three coefficients are independent. These coefficients are determined by matching with the finite element solutions carried out in the present paper (our attention is focused on the first five terms of the higher-order asymptotic solution). We obtain an analytic characterization of crack tip fields, which conform very well to the finite element solutions over wide range. A modified two parameter criterion based on the asymptotic solution of five terms is presented. The upper bound and lower bound fracture toughness curves predicted by modified two parameter criterion are given. These two curves agree with most of the experimental data and fully capture the proper trend.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a constitutive model of elasticity coupled with damage suggested by Lemaitre et al, [1] is used. The macroscopic stress-strain response of the model includes two stages: strain hardening and strain softening. The basic equation is derived for the anti-plane shear problem. Several lowest order asymptotic solutions are obtained, and assembled for the crack-tip fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an exact analysis for high order asymptotic field of the plane stress crack problem. It has been shown that the second order asymptotic field is not an independent eigen field and should be matched with the elastic strain term of the first order asymptotic field. The second order stress field ahead of the crack tip is quite small compared with the first order stress field. The stress field ahead of crack tip is characterized by the HRR field. Hence the J integral can be used as a criterion for crack initiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The number, the angles of orientation and the stability in Rumyantsev Movchan's sense of oblique steady rotations of a symmetric heavy gyroscope with a cavity completely filled with a uniform viscous liquid, possessing a fixed point 0 on its symmetric axis. are given for various values of the parameters. By taking the square of the upright component of the angular momentum M2 as a control parameter, three types of bifurcation diagrams of the steady rotations, two types of jumps and two kinds of local catastrophes, one being the symmetric reduced cusp type and the other being of the symmetric reduced butterfly type, are obtained. By taking account of the M2-damping owing to the moment of unavoidable faint friction, two different modes for the gyroscope, initially in a stable quasi-steady upright rotation with a nutation angle theta(s) equal to zero, to topple over are found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A regular perturbation technique is suggested to deal with the problem of one dimensional stress wave propagation in viscoelastic media with damage. Based upon the first order asymptotic solution obtained, the characteristics of wave attenuation are studied. In fact, there exist three different time-dependent phenomena featuring the dynamic response of the materials, the first expressing the characteristics of wave propagation, the second indicating the innate effect of visco-elastic matrix and the third coming from the time dependent damage. The comparision of first order asymptotic solution with the numerical results calculated by a finite difference procedure shows that the perturbation expansion technique may offer a useful approach to the problem concerned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper points out that viscosity can induce mode splitting in a uniform infinite cylinder of an incompressible fluid with self-gravitation, and that the potential energy criterion cannot be appropriate to all normal modes obtained, i.e., there will be stable modes with negative potential energy (<0). Therefore the condition >0 is not necessary, although sufficient, for the stability of a mode in an incompressible static fluid or magnetohydrodynamics (MHD) system, which is a correction of both Hare's [Philos. Mag. 8, 1305 (1959)] and Chandrasekhar's [Hydrodynamic and Hydromagnetic Stability (Oxford U.P., Oxford, 1961), p. 604] stability criterion for a mode. These results can also be extended to compressible systems with a polytropic exponent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basing ourselves on the analysis of magnitude of order, we strictly prove fundamental lemmas for asymptotic integral, including the cases of infinite region. Then a general formula for asymptotic expansion of integrals is given. Finally, we derive a sufficient condition for an ordinary differential equation to possess a solution of the Frobenius series type at finite irregular singularities or branching points.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the governing equations and the analytical method of the secondorder asymptotic field for the plane-straln crack problems of mode I have been presented. The numerical calculation has been carried out. The amplitude coefficients k2 of the second term of the asymptotic field have been determined after comparing the present results with some fine results of the finite element calculation. The variation of coefficients k2 with changes of specimen geometry and developments of plastic zone have been analysed. It is shown that the second term of the asymptotic field has significant influence on the near-crack-tip field. Therefore, we may reasonably argue that both the J-integral and the coefficient k2 can beeome two characterizing parameters for crack initiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present an asymptotic method for the analysis of a class of strongly nonlinear oscillators, derive second-order approximate solutions to them expressed in terms of their amplitudes and phases, and obtain the equations governing the amplitudes and phases, by which the amplitudes of the corresponding limit cycles and their behaviour can be determined. As an example, we investigate the modified van der Pol oscillator and give the second-order approximate analytical solution of its limit cycle. The comparison with the numerical solutions shows that the two results agree well with each other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is pointed out that the naive asymptotic expansion does not satisfy all the body boundary condition. A nonhomogeneous body boundary condition is obtained from this expansion. It is this condition that the additional wave term must satisfy. Moreover, because of this condition, the wave term must appear. It is pointed out that the zeroth approximation in the naive asymptotic expansion has weak singularity and the singularities become still stronger in the subsequent approximations.