962 resultados para Astrophysics - Solar and Stellar Astrophysics
Resumo:
Both continuum and emission line flickering are phenomena directly associated with the mass-accretion process. In this work we simulated accretion-disk Doppler maps, including the effects of winds and flickering flares. Synthetic flickering Doppler maps were calculated and the effect of the flickering parameters on the maps was explored. Jets and winds occur in many astrophysical objects where accretion disks are present. Jets are generally absent among the cataclysmic variables (CVs), but there is evidence of mass loss by wind in many objects. CVs are ideal objects to study accretion disks, and consequently to study the wind associated with these disks. We also present simulations of accretion disks, including the presence of a wind with orbital phase resolution. Synthetic Ha line profiles in the optical region were obtained and their corresponding Doppler maps were calculated. The effect of the wind simulation parameters on the wind line profiles was also explored. From this study we verified that optically thick lines and/or emission by diffuse material into the primary Roche lobe are necessary to generate single peaked line profiles, often seen in CVs. The future accounting of these effects is suggested for interpreting Doppler tomography reconstructions.
Resumo:
The study of Wolf-Rayet stars plays an important role in evolutionary theories of massive stars. Among these objects, similar to 20 per cent are known to be in binary systems and can therefore be used for the mass determination of these stars. Most of these systems are not spatially resolved and spectral lines can be used to constrain the orbital parameters. However, part of the emission may originate in the interaction zone between the stellar winds, modifying the line profiles and thus challenging us to use different models to interpret them. In this work, we analysed the He II lambda 4686 angstrom + C IV lambda 4658 angstrom blended lines of WR 30a (WO4+O5) assuming that part of the emission originate in the wind-wind interaction zone. In fact, this line presents a quiescent base profile, attributed to the WO wind, and a superposed excess, which varies with the orbital phase along the 4.6-d period. Under these assumptions, we were able to fit the excess spectral line profile and central velocity for all phases, except for the longest wavelengths, where a spectral line with constant velocity seems to be present. The fit parameters provide the eccentricity and inclination of the binary orbit, from which it is possible to constrain the stellar masses.
Resumo:
Recent work, has produced a wealth of data concerning the chemical evolution of the Galactic bulge, both for stars and nebulae. Present theoretical models generally adopt it limited range of such constraints, frequenfly using it single chemical element (usually iron), which is not enough to describe it unambiguously. In this work, we take into account contraints involving,9 Many chemical elements as possible, basically obtained from bulge nebulae and stars. Our main goal is to show that different scenarios can describe, at least partially the abundance distribution and several dishuice-independent correlations for these objects . Three classes of models were developed. The first is it one-zone, single-infall model, the. Second is it one-zone, double-infall model and the third is a multizone, double-infall model. We show that a one-zone model with it single infall episode is able to reproduce some of the observational data, but the best results tire achieved using it multizone, double-infall model.
Resumo:
We discuss the association between the candidate magnetar CXOU J171405.7-381031 and the supernova remnant CTB 37B. The recent detection of the period derivative of the object allowed an estimation of a young characteristic age of only similar to 1000 yr. This value is too small to be compatible even with the minimum radius of the remnant being >= 10 pc, the value corresponding to the lower limit of the estimated distance of 10.2 +/- 3.5 kpc, unless the true distance happens to be even smaller than the lower limit. We argue that a consistent scenario for the remnant`s origin, in which the latter is powered by the energy injected by a young magnetar, is indeed more accurate to explain the young age, and demonstrates its non-standard (i.e. magnetar-driven) nature.
Resumo:
The search for rocky exoplanets plays an important role in our quest for extra-terrestrial life. Here, we discuss the extreme physical properties possible for the first characterised rocky super-Earth, CoRoT-7b (R(pl) = 1.58 +/- 0.10 R(Earth), M(pl) = 6.9 +/- 1.2 M(Earth)). It is extremely close to its star (a = 0.0171 AU = 4.48 R(st)), with its spin and orbital rotation likely synchronised. The comparison of its location in the (M(pl), R(pl)) plane with the predictions of planetary models for different compositions points to an Earth-like composition, even if the error bars of the measured quantities and the partial degeneracy of the models prevent a definitive conclusion. The proximity to its star provides an additional constraint on the model. It implies a high extreme-UV flux and particle wind, and the corresponding efficient erosion of the planetary atmosphere especially for volatile species including water. Consequently, we make the working hypothesis that the planet is rocky with no volatiles in its atmosphere, and derive the physical properties that result. As a consequence, the atmosphere is made of rocky vapours with a very low pressure (P <= 1.5 Pa), no cloud can be sustained, and no thermalisation of the planet is expected. The dayside is very hot (2474 +/- 71 K at the sub-stellar point) while the nightside is very cold (50-75 K). The sub-stellar point is as hot as the tungsten filament of an incandescent bulb, resulting in the melting and distillation of silicate rocks and the formation of a lava ocean. These possible features of CoRoT-7b could be common to many small and hot planets, including the recently discovered Kepler-10b. They define a new class of objects that we propose to name ""Lava-ocean planets"". (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We present a catalogue of galaxy photometric redshifts and k-corrections for the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7), available on the World Wide Web. The photometric redshifts were estimated with an artificial neural network using five ugriz bands, concentration indices and Petrosian radii in the g and r bands. We have explored our redshift estimates with different training sets, thus concluding that the best choice for improving redshift accuracy comprises the main galaxy sample (MGS), the luminous red galaxies and the galaxies of active galactic nuclei covering the redshift range 0 < z < 0.3. For the MGS, the photometric redshift estimates agree with the spectroscopic values within rms = 0.0227. The distribution of photometric redshifts derived in the range 0 < z(phot) < 0.6 agrees well with the model predictions. k-corrections were derived by calibration of the k-correct_v4.2 code results for the MGS with the reference-frame (z = 0.1) (g - r) colours. We adopt a linear dependence of k-corrections on redshift and (g - r) colours that provide suitable distributions of luminosity and colours for galaxies up to redshift z(phot) = 0.6 comparable to the results in the literature. Thus, our k-correction estimate procedure is a powerful, low computational time algorithm capable of reproducing suitable results that can be used for testing galaxy properties at intermediate redshifts using the large SDSS data base.
Resumo:
We present two-dimensional stellar and gaseous kinematics of the inner 120 x 250 pc2 of the LINER/Seyfert 1 galaxy M81, from optical spectra obtained with the Gemini Multi-Object Spectrograph (GMOS) integral field spectrograph on the Gemini-North telescope at a spatial resolution of approximate to 10 pc. The stellar velocity field shows circular rotation and, overall, is very similar to the published large-scale velocity field, but deviations are observed close to the minor axis which can be attributed to stellar motions possibly associated with a nuclear bar. The stellar velocity dispersion of the bulge is 162 +/- 15 km s-1, in good agreement with previous measurements and leading to a black hole mass of M(BH) = 5.5+3.6(-2.0) x 107 M(circle dot) based on the M(BH)-Sigma relationship. The gas kinematics is dominated by non-circular motions and the subtraction of the stellar velocity field reveals blueshifts of approximate to-100 km s-1 on the far side of the galaxy and a few redshifts on the near side. These characteristics can be interpreted in terms of streaming towards the centre if the gas is in the plane. On the basis of the observed velocities and geometry of the flow, we estimate a mass inflow rate in ionized gas of approximate to 4.0 x 10-3 M(circle dot) yr-1, which is of the order of the accretion rate necessary to power the LINER nucleus of M81. We have also applied the technique of principal component analysis (PCA) to our data, which reveals the presence of a rotating nuclear gas disc within approximate to 50 pc from the nucleus and a compact outflow, approximately perpendicular to the disc. The PCA combined with the observed gas velocity field shows that the nuclear disc is being fed by gas circulating in the galaxy plane. The presence of the outflow is supported by a compact jet seen in radio observations at a similar orientation, as well as by an enhancement of the [O i]/H alpha line ratio, probably resulting from shock excitation of the circumnuclear gas by the radio jet. With these observations we are thus resolving both the feeding - via the nuclear disc and observed gas inflow, and the feedback - via the outflow, around the low-luminosity active nucleus of M81.
Resumo:
The correlation between the breaks in the metallicity distribution and the corotation radius of spiral galaxies has been already advocated in the past and is predicted by a chemodynamical model of our Galaxy that effectively introduces the role of spiral arms in the star formation rate. In this work, we present photometric and spectroscopic observations made with the Gemini Telescope for three of the best candidates of spiral galaxies to have the corotation inside the optical disc: IC 0167, NGC 1042 and NGC 6907. We observed the most intense and well-distributed H ii regions of these galaxies, deriving reliable galactocentric distances and oxygen abundances by applying different statistical methods. From these results, we confirm the presence of variations in the gradients of metallicity of these galaxies that are possibly correlated with the corotation resonance.
Resumo:
We present the discovery of a wide (67 AU) substellar companion to the nearby (21 pc) young solar-metallicity M1 dwarf CD-35 2722, a member of the approximate to 100 Myr AB Doradus association. Two epochs of astrometry from the NICI Planet-Finding Campaign confirm that CD-35 2722 B is physically associated with the primary star. Near-IR spectra indicate a spectral type of L4 +/- 1 with a moderately low surface gravity, making it one of the coolest young companions found to date. The absorption lines and near-IR continuum shape of CD-35 2722 B agree especially well the dusty field L4.5 dwarf 2MASS J22244381-0158521, while the near-IR colors and absolute magnitudes match those of the 5 Myr old L4 planetary-mass companion, 1RXS J160929.1-210524 b. Overall, CD-35 2722 B appears to be an intermediate-age benchmark for L dwarfs, with a less peaked H-band continuum than the youngest objects and near-IR absorption lines comparable to field objects. We fit Ames-Dusty model atmospheres to the near-IR spectra and find T(eff) = 1700-1900 K and log(g) = 4.5 +/- 0.5. The spectra also show that the radial velocities of components A and B agree to within +/- 10 km s(-1), further confirming their physical association. Using the age and bolometric luminosity of CD-35 2722 B, we derive a mass of 31 +/- 8 M(Jup) from the Lyon/Dusty evolutionary models. Altogether, young late-M to mid-L type companions appear to be overluminous for their near-IR spectral type compared with field objects, in contrast to the underluminosity of young late-L and early-T dwarfs.
Resumo:
We recently predicted the existence of random primordial magnetic fields (RPMFs) in the form of randomly oriented cells with dipole-like structure with a cell size L(0) and an average magnetic field B(0). Here, we investigate models for primordial magnetic field with a similar web-like structure, and other geometries, differing perhaps in L(0) and B(0). The effect of RPMF on the formation of the first galaxies is investigated. The filtering mass, M(F), is the halo mass below which baryon accretion is severely depressed. We show that these RPMF could influence the formation of galaxies by altering the filtering mass and the baryon gas fraction of a halo, f(g). The effect is particularly strong in small galaxies. We find, for example, for a comoving B(0) = 0.1 mu G, and a reionization epoch that starts at z(s) = 11 and ends at z(e) = 8, for L(0) = 100 pc at z = 12, the f(g) becomes severely depressed for M < 10(7) M(circle dot), whereas for B(0) = 0 the f(g) becomes severely depressed only for much smaller masses, M < 10(5) M(circle dot). We suggest that the observation of M(F) and f(g) at high redshifts can give information on the intensity and structure of primordial magnetic fields.
Resumo:
Rotationally-split modes can provide valuable information about the internal rotation profile of stars. This has been used for years to infer the internal rotation behavior of the Sun. The present work discusses the potential additional information that rotationally splitting asymmetries may provide when studying the internal rotation profile of stars. We present here some preliminary results of a method, currently under development, which intends: 1) to understand the variation of the rotational splitting asymmetries in terms of physical processes acting on the angular momentum distribution in the stellar interior, and 2) how this information can be used to better constrain the internal rotation profile of the stars. The accomplishment of these two objectives should allow us to better use asteroseismology as a test-bench of the different theories describing the angular momentum distribution and evolution in the stellar interiors. (C) 2010 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim
Resumo:
Variations in the spatial configuration of the interstellar magnetic field (ISMF) near the Sun can be constrained by comparing the ISMF direction at the heliosphere found from the Interstellar Boundary Explorer (IBEX) spacecraft observations of a ""Ribbon"" of energetic neutral atoms (ENAs), with the ISMF direction derived from optical polarization data for stars within similar to 40 pc. Using interstellar polarization observations toward similar to 30 nearby stars within similar to 90 degrees of the heliosphere nose, we find that the best fits to the polarization position angles are obtained for a magnetic pole directed toward ecliptic coordinates of lambda, beta similar to 263 degrees, 37 degrees (or galactic coordinates of l, b similar to 38 degrees, 23 degrees), with uncertainties of +/- 35 degrees based on the broad minimum of the best fits and the range of data quality. This magnetic pole is 33 degrees from the magnetic pole that is defined by the center of the arc of the ENA Ribbon. The IBEX ENA ribbon is seen in sight lines that are perpendicular to the ISMF as it drapes over the heliosphere. The similarity of the polarization and Ribbon directions for the local ISMF suggests that the local field is coherent over scale sizes of tens of parsecs. The ISMF vector direction is nearly perpendicular to the flow of local interstellar material (ISM) through the local standard of rest, supporting a possible local ISM origin related to an evolved expanding magnetized shell. The local ISMF direction is found to have a curious geometry with respect to the cosmic microwave background dipole moment.
Resumo:
The CoRoT space observatory is a project which is led by the French space agency CNES and leading space research institutes in Austria, Brazil, Belgium, Germany and Spain and also the European Space Agency ESA. CoRoT observed since its launch in December 27, 2006 about 100 000 stars for the exoplanet channel, during 150 days uninterrupted high-precision photometry. Since the The CoRoT-team has several exoplanet candidates which are currently analyzed under its study, we report here the discoveries of nine exoplanets which were observed by CoRoT. Discovered exoplanets such as CoRoT-3b populate the brown dwarf desert and close the gap of measured physical properties between usual gas giants and very low mass stars. CoRoT discoveries extended the known range of planet masses down to about 4.8 Earth-masses (CoRoT-7b) and up to 21 Jupiter masses (CoRoT-3b), the radii to about 1.68 x 0.09 R (Earth) (CoRoT-7b) and up to the most inflated hot Jupiter with 1.49 x 0.09 R (Earth) found so far (CoRoT-1b), and the transiting exoplanet with the longest period of 95.274 days (CoRoT-9b). Giant exoplanets have been detected at low metallicity, rapidly rotating and active, spotted stars. Two CoRoT planets have host stars with the lowest content of heavy elements known to show a transit hinting towards a different planethost-star-metallicity relation then the one found by radial-velocity search programs. Finally the properties of the CoRoT-7b prove that rocky planets with a density close to Earth exist outside the Solar System. Finally the detection of the secondary transit of CoRoT-1b at a sensitivity level of 10(-5) and the very clear detection of the ""super-Earth"" CoRoT-7b at 3.5 x 10(-4) relative flux are promising evidence that the space observatory is being able to detect even smaller exoplanets with the size of the Earth.
Resumo:
The environment where galaxies are found heavily influences their evolution. Close groupings, like the ones in the cores of galaxy clusters or compact groups, evolve in ways far more dramatic than their isolated counterparts. We have conducted a multi-wavelength study of Hickson Compact Group 7 (HCG 7), consisting of four giant galaxies: three spirals and one lenticular. We use Hubble Space Telescope (HST) imaging to identify and characterize the young and old star cluster populations. We find young massive clusters (YMCs) mostly in the three spirals, while the lenticular features a large, unimodal population of globular clusters (GCs) but no detectable clusters with ages less than a few Gyr. The spatial and approximate age distributions of the similar to 300 YMCs and similar to 150 GCs thus hint at a regular star formation history in the group over a Hubble time. While at first glance the HST data show the galaxies as undisturbed, our deep ground-based, wide-field imaging that extends the HST coverage reveals faint signatures of stellar material in the intragroup medium (IGM). We do not, however, detect the IGM in H I or Chandra X-ray observations, signatures that would be expected to arise from major mergers. Despite this fact, we find that the H I gas content of the individual galaxies and the group as a whole are a third of the expected abundance. The appearance of quiescence is challenged by spectroscopy that reveals an intense ionization continuum in one galaxy nucleus, and post-burst characteristics in another. Our spectroscopic survey of dwarf galaxy members yields a single dwarf elliptical galaxy in an apparent stellar tidal feature. Based on all this information, we suggest an evolutionary scenario for HCG 7, whereby the galaxies convert most of their available gas into stars without the influence of major mergers and ultimately result in a dry merger. As the conditions governing compact groups are reminiscent of galaxies at intermediate redshift, we propose that HCGs are appropriate for studying galaxy evolution at z similar to 1-2.
Resumo:
In this paper, we present multiband optical polarimetric observations of the very-high energy blazar PKS 2155-304 made simultaneously with a HESS/Fermi high-energy campaign in 2008, when the source was found to be in a low state. The intense daily coverage of the data set allowed us to study in detail the temporal evolution of the emission, and we found that the particle acceleration time-scales are decoupled from the changes in the polarimetric properties of the source. We present a model in which the optical polarimetric emission originates at the polarized mm-wave core and propose an explanation for the lack of correlation between the photometric and polarimetric fluxes. The optical emission is consistent with an inhomogeneous synchrotron source in which the large-scale field is locally organized by a shock in which particle acceleration takes place. Finally, we use these optical polarimetric observations of PKS 2155-304 at a low state to propose an origin for the quiescent gamma-ray flux of the object, in an attempt to provide clues for the source of its recently established persistent TeV emission.