904 resultados para Asthma
Resumo:
Nitric oxide synthase (NOS) inhibitors are largely used to evaluate the NO contribution to pulmonary allergy, but contrasting data have been reported. In this study, pharmacological, biochemical and pharmacokinetic assays were performed to compare the effects of acute and long-term treatment of BALB/C mice with the non-selective NOS inhibitor L-NAME in ovalbumin (OVA)-challenged mice. Acute L-NAME treatment (50 mg/kg, gavage) significantly reduced the eosinophil number in bronchoalveolar lavage fluid (BALF). The inducible NOS (iNOS) inhibitor aminoguanidine (20 mg/kg/day in the drinking water) also significantly reduced the eosinophil number in BALF In contrast, 3-week L-NAME treatment (50 and 150 mg/kg/day in the drinking water) significantly increased the pulmonary eosinophil influx. The constitutive NOS (cNOS) activity in brain and lungs was reduced by both acute and 3-week L-NAME treatments. The pulmonary iNOS activity was reduced by acute L-NAME (or aminoguanidine), but unaffected by 3-week L-NAME treatment. Acute L-NAME (or aminoguanidine) treatment was more efficient to reduce the NO(x) levels compared with 3-week L-NAME treatment. The pharmacokinetic study revealed that L-NAME is not bioavailable when given orally. After acute L-NAME intake, serum concentrations of the metabolite N(omega)-nitro-L-arginine decreased from 30 min to 24 h. In the 3-week L-NAME treatment, the N(omega)-nitro-L-arginine concentration was close to the detection limit. In conclusion, 3-week treatment with L-NAME yields low serum N(omega)-nitro-L-arginine concentrations, causing preferential inhibition of cNOS activity. Therefore, eosinophil influx potentiation by 3-week L-NAME treatment may reflect removal of protective cNOS-derived NO, with no interference on the ongoing inflammation due to iNOS-derived NO. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Helminths and their products have a profound immunomodulatory effect upon the inductive and effector phases of inflammatory responses, including allergy. We have demonstrated that PAS-1, a protein isolated from Ascaris strum worms, has an inhibitory effect on lung allergic inflammation due to its ability to down-regulate eosinophilic inflammation, Th2 cytokine release and IgE antibody production. Here, we investigated the role of IL-12, IFN-gamma and IL-10 in the PAS-1-induced inhibitory mechanism using a murine model of asthma. Wild type C57BL/6, IL-12(-/-), IFN-gamma(-/-) and IL-10(-/-) mice were immunized with PAS-1 and/or OVA and challenged with the same antigens intranasally. The suppressive effect of PAS-I was demonstrated on the cellular influx into airways, with reduction of eosinophil number and eosinophil peroxidase activity in OVA + PAS-1-immunized wild type mice. This effect well correlated with a significant reduction in the levels of IL-4, IL-5, IL-13 and eotaxin in BAL fluid. Levels of IgE and IgG1 antibodies were also impaired in serum from these mice. The inhibitory activity of PAS-I was also observed in IL-12(-/-) mice, but not in IFN-gamma(-/-) and IL-10(-/-) animals. These data show that IFN-gamma and IL-10, but not IL-12, play an important role in the PAS-1 modulatory effect. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Background Epidemiological and experimental data suggest that bacteria] lipopolysaccharides (LPS) can either protect from or exacerbate allergic asthma. Lipopolysaccharides trigger immune responses through toll-like receptor 4 (TLR4) that in turn activates two major signalling pathways via either MyD88 or TRIF adaptor proteins. The LPS is a pro-Type 1 T helper cells (Th 1) adjuvant while aluminium hydroxide (alum) is a strong Type 2 T helper cells (Th2) adjuvant, but the effect of the mixing of both adjuvants on the development of lung allergy has not been investigated. Objective We determined whether natural (LPS) or synthetic (ER-803022) TLR4 agonists adsorbed onto alum adjuvant affect allergen sensitization and development of airway allergic disease. To dissect LPS-induced molecular pathways, we used TLR4-, MyD88-, TRIF-, or IL-12/IFN-gamma-deficient mice. Methods Mice were sensitized with subcutaneous injections of ovalbumin (OVA) with or without TLR4 agonists co-adsorbed onto alum and challenged with intranasally with OVA. The development of allergic lung disease was evaluated 24 h after last OVA challenge. Results Sensitization with OVA plus LPS co-adsorbed onto alum impaired in dose-dependent manner OVA-induced Th2-mediated allergic responses such as airway eosinophilia, type-2 cytokines secretion, airway hyper-reactivity, mucus hyper production and serum levels of IgE or IgG1 anaphylactic antibodies. Although the levels of IgG2a, Th1 -affiliated isotype increased, investigation into the lung-specific effects revealed that LPS did not induce a Th1 pattern of inflammation. Lipopolysaccharides impaired the development of Th2 immunity, signaling via TLR4 and MyD88 molecules and via the IL-12/IFN-gamma axis, but not through TRIF pathway. Moreover, the synthetic TLR4 agonists that proved to have a less systemic inflammatory response than LPS also protected against allergic asthma development. Conclusion Toll-like receptor 4 agonists co-adsorbed with allergen onto alum down-modulate allergic lung disease and prevent the development of polarized T cell-mediated airway inflammation.
Resumo:
Endothelin peptides have been shown to increase cholinergic neurotransmission in the airway. Genetic differences in airway responsiveness to methacholine where reported in mice. The present study compared the airway reactivity to methacholine in C57Bl/6 and BALB/c mice, the involvement of endothelin on this reactivity and endothelin levels in lung homogenates. Whole airway reactivity was analyzed by means of an isolated lung preparation where lungs were perfused through the trachea with warm gassed Krebs solution at 5 ml/min, and changes in perfusion pressure triggered by methacholine at increasing bolus doses (0.1-100 mu g) were recorded. We found that the maximal airway response to methacholine was much greater in C57Bl/6 than in BALB/c (Emax 34 +/- 2 vs 12 +/- 1 cmH(2)O, respectively). Bosentan (mixed endothelin A/B receptor antagonist; 10 mg/kg, i.p., 30 min before sacrifice) reduced lung responsiveness to methacholine in C57Bl/6 (58% at EC50 level) but had no effect in BALB/c mouse strain. This effect seems to be mediated by the endothelin ETA receptor since it was significantly reduced by the selective endothelin ETA receptor antagonist, BQ 123. Immunoreactive endothelin levels were higher in C57Bl/6 than in BALB/c lungs (43 5 vs 19 +/- 5 pg/g of tissue). In conclusion, airway reactivity to methacholine and lung endothelins content varies markedly between C57Bl/6 and BALB/c strains. Endothelins upregulate lung responsiveness to methacholine only in C57Bl/6, an effect achieved through the endothelin ETA receptor. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Clinical and experimental evidences show that formaldehyde (FA) exposure has an irritant effect on the upper airways. As being an indoor and outdoor pollutant, FA is known to be a causal factor of occupational asthma. This study aimed to investigate the repercussion of FA exposure on the course of a lung allergic process triggered by an antigen unrelated to FA. For this purpose, male Wistar rats were subjected to FA inhalation for 3 consecutive days (1%, 90-min daily), subsequently sensitized with ovalbumin (OVA)-alum via the intraperitoneal route, and 2 weeks later challenged with aerosolized OVA. The OVA challenge in rats after FA inhalation (FA/OVA group) evoked a low-intensity lung inflammation as indicated by the reduced enumerated number of inflammatory cells in bronchoalveolar lavage as compared to FA-untreated allergic rats (OVA/OVA group). Treatment with FA also reduced the number of bone marrow cells and blood leukocytes in sensitized animals challenged with OVA, which suggests that the effects of FA had not been only localized to the airways. As indicated by passive cutaneous anaphylactic reaction, FA treatment did not impair the anti-OVA IgE synthesis, but reduced the magnitude of OVA challenge-induced mast cell degranulation. Moreover, FA treatment was associated to a diminished lung expression of PECAM-1 (platelet-endothelial cell adhesion molecule 1) in lung endothelial cells after OVA challenge and an exacerbated release of nitrites by BAL-cultured cells. Keeping in mind that rats subjected solely to either FA or OVA challenge were able to significantly increase the cell influx into lung, our study shows that FA inhalation triggers long-lasting effects that affect multiple mediator systems associated to OVA-induced allergic lung such as the reduction of mast cells activation, PECAM-1 expression and exacerbation of NO generation, thereby contributing to the decrease of cell recruitment after the OVA challenge. In conclusion, repeated expositions to air-borne FA may impair the lung cell recruitment after an allergic stimulus, thereby leading to a non-responsive condition against inflammatory stimuli likely those where mast cells are involved. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background and Objective. Low level laser therapy (LLLT) is a known anti-inflammatory therapy. Herein we studied the effect of LLLT on lung permeability and the IL-1 beta level in LPS-induced pulmonary inflammation. Study Design/Methodology. Rats were divided into 12 groups (n = 7 for each group). Lung permeability was measured by quantifying extravasated albumin concentration in lung homogenate, inflammatory cells influx was determined by myeloperoxidase activity, IL-1P in BAL was determined by ELISA and IL-1P mRNA expression in trachea was evaluated by RT-PCR. The rats were irradiated on the skin over the upper bronchus at the site of tracheotomy after LPS. Results. LLLT attenuated lung permeability. In addition, there was reduced neutrophil influx, myeloperoxidase activity and both IL-1 beta in BAL and IL-1 beta mRNA expression in trachea obtained from animals subjected to LPS-induced inflammation. Conclusion. LLLT reduced the lung permeability by a mechanism in which the IL-1 beta seems to have an important role.
Resumo:
Female sex hormones (FSHs) exert profound regulatory effects on the course of lung inflammation due to allergic and non-allergic immune responses. As pollution is one of the pivotal factors to induce lung dysfunction, in this study we investigated the modulatory role of FSHs on lung inflammation after a formaldehyde (FA) exposure. For this purpose, lung and systemic inflammatory responses were evaluated in terms of leukocytes countings in bronchoalveolar lavage (BAL), peripheral blood and bone marrow lavage from 7-day ovariectomized (OVx) and Sham-OVx rats subjected to FA inhalation for 3 consecutive days. The hypothesized link between effects of FSHs on expression of adhesion molecules and mast cells degranulation was also studied. Once exposed to FA, Sham-OVx rats increased the number of total cells recovered in BAL and of leukocytes in peripheral blood, and decreased the counts in bone marrow. By contrast, in OVx rats upon FA exposure there was a reduction of the total cells counts in BAL and of blood leukocytes: lung expressions of ICAM-1 and Mac-1 were depressed, but the number of bone marrow cells did not vary. Estradiol treatment of OVx rats increased the total cells in BAL and decreased the number of blood leukocytes, whereas the number of bone marrow cell remained unaltered. Progesterone treatment, in turn increased the total cells in BAL and blood leukocytes, but decreased the number of bone marrow cells. OVx rats exposed to FA developed tracheal hyperresponsiveness to methacholine (MCh). A similarly altered response was found between the tracheal segments of Sham-OVx rats after FA exposure and that found in tracheae of naive rats. Estradiol treatment prevented FA-induced tracheal hyperresponsiveness to MCh whereas progesterone was ineffective in this regard. In addition, OVx rats upon FA exposure significantly increased both, the ability of mast cell degranulation and serum corticosterone levels. In conclusion, it was found that FSHs act by distinct control mechanisms on FA-induced lung inflammation and tracheal hyperresponsiveness, since at low circulating levels of FSHs (such as those after OVx) there is some resistance to the development of a lung inflammatory response, but the cholinergic tracheal responsiveness is exacerbated. Our data also help to understand the involvement of FSHs on mast cells activity after pollutants exposure and add information regarding the role of FSHs on the mechanisms related to endothelium-leukocyte interactions. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Mycobacterium bovis Bacillus Calmette-Guerin (BCG) has been shown to down-regulate experimental allergic asthma, a finding that reinforced the hygiene hypothesis. We have previously found that recombinant BCG (rBCG) strain that express the genetically detoxified Si subunit of pertussis toxin (rBCG-S1PT) exerts an adjuvant effect that enhances Th1 responses against BCG proteins. Here we investigated the effect of this rBCG-S1PT on the classical ovalbumin-induced mouse model of allergic lung disease. We found that rBCG-S1PT was more effective than wild-type BCG in preventing Th2-mediated allergic immune responses. The inhibition of allergic lung disease was not associated with increased concentration of suppressive cytokines or with an increased number of pulmonary regulatory T cells but was positively correlated with the increase in IFN-gamma-producing T cells and T-bet expression in the lung. In addition, an IL-12-dependent mechanism appeared to be important to the inhibition of lung allergic disease. The inhibition of allergic inflammation was found to be restricted to the lung because when allergen challenge was given by the intraperitoneal route, rBCG-S1PT administration failed to inhibit peritoneal allergic inflammation and type 2 cytokine production. Our work offers a nonclassical interpretation for the hygiene hypothesis indicating that attenuation of lung allergy by rBCG could be due to the enhancement of local lung Th1 immunity induced by rBCG-S1PT. Moreover, it highlights the possible use of rBCG strains as multipurpose immunomodulators by inducing specific immunity against microbial products while protecting against allergic asthma.
Resumo:
Lipopolysaccharides from gram-negative bacteria are amongst the most common causative agents of acute lung injury, which is characterized by an inflammatory response, with cellular infiltration and the release of mediators/cytokines. There is evidence that bradykinin plays a role in lung inflammation in asthma but in other types of lung inflammation its role is less clear. In the present study we evaluated the role of the bradykinin B(1) receptor in acute lung injury caused by lipopolysaccharide inhalation and the mechanisms behind bradykinin actions participating in the inflammatory response. We found that in C57BI/6 mice, the bradykinin B(1) receptor expression was up-regulated 24 h after lipopolysaccharide inhalation. At this time, the number of cells and protein concentration were significantly increased in the bronchoalveolar lavage fluid and the mice developed airway hyperreactivity to methacholine. In addition, there was an increased expression of tumor necrosis factor-alpha, interleukin-1 beta and interferon-gamma and chemokines (monocytes chemotactic protein-1 and KC) in the bronchoalveolar lavage fluid and in the lung tissue. We then treated the mice with a bradykinin B, receptor antagonist, R-954 (Ac-Orn-[Oic(2), alpha-MePhe(5), D-beta Nal(7), Ile(8)]desArg(9)-bradykinin), 30 min after lipopolysaccharide administration. We observed that this treatment prevented the airway hyperreactivity as well as the increased cellular infiltration and protein content in the bronchoalveolar lavage fluid. Moreover, R-954 inhibited the expression of cytokines/chemokines. These results implicate bradykinin, acting through B(1) receptor, in the development of acute lung injury caused by lipopolysaccharide inhalation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Formaldehyde (FA) exposure induces upper airways irritation and respiratory abnormalities, but its mechanisms are not understood. Since mast cells are widely distributed in the airways, we hypothesized that FA might modify the airways reactivity by mechanism involving their activation. Tracheal rings of rats were incubated with Dulbecco`s modified medium culture containing FA (0.1 ppm) in 96-well plastic microplates in a humid atmosphere. After 30 min, 6 h, and 24-72 h, the rings were suspended in an organ bath and dose-response curve to methacholine (MCh) were determined. incubation with FA caused a transient tracheal hyperresponsiveness to MCh that was independent from tracheal epithelium integrity. Connective tissue mast cell depletion caused by compound 48/80 or mast cell activation by the allergic reaction, before exposure of tracheal rings to FA prevented the increased responsiveness to MCh. LTB(4) concentrations were increased in the culture medium of tracheas incubated with FA for 48 h, whereas the LTB(4)-receptor antagonist MK886 (1 mu M) added before FA exposure rendered the tracheal rings normoreactive to MCh. In addition, FA exposure did not cause hyperresponsiveness in tracheal segments incubated with L-arginine (1 mu M). We suggest that airway connective tissue mast cells constitute the target and may provide the increased LTB(4) generation as well as an elevated consumption of NO leading to tracheal hyperresponsiveness to MCh. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Asthma is a chronic respiratory disease characterized by airway inflammation and airway hyperresponsiveness (AHR). One strategy to treat allergic diseases is the development of new drugs. Flavonoids are compounds derived from plants and are known to have antiallergic, anti-inflammatory, and antioxidant properties. To investigate whether the flavonoid kaempferol glycoside 3-O-[beta-D-glycopiranosil-(1 -> 6)-alpha-L-ramnopiranosil]-7-O-alpha-L-ramnopiranosil-kaempferol (GRRK) would be capable of modulating allergic airway disease (AAD) either as a preventive (GRRK P) or curative (GRRK C) treatment in an experimental model of asthma. At weekly intervals, BALB/c mice were subcutaneously (sc) sensitized twice with ovalbumin (OVA)/alum and challenged twice with OVA administered intranasally. To evaluate any preventive effects GRRK was administered 1 h (hour) before each OVA-sensitization and challenge, while to analyze the curative effects mice were first sensitized with OVA, followed by GRRK given at day 18 through 21. The onset: of AAD was evaluated 24 h after the last OVA challenge. Both treatments resulted in a dose-dependent reduction in total leukocyte and eosinophil counts in the bronchoalveolar lavage fluid (BAL). GRRK also decreased CD4(+), B220(+), MHC class II and CD40 molecule expressions in BAL cells. Histology and lung mechanic showed that GRRK suppressed mucus production and ameliorated the AHR induced by OVA challenge. Furthermore, GRRK impaired Th2 cytokine production (IL-5 and IL-13) and did not induce a Th1 pattern of inflammation. These findings demonstrate that GRRK treatment before or after established allergic lung disease down-regulates key asthmatic features. Therefore. GRRK has a potential clinical use for the treatment of allergic asthma. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Although there is accumulated evidence of a role for Notch in the developing lung, it is still unclear how disruption of Notch signaling affects lung progenitor cell fate and differentiation events in the airway epithelium. To address this issue, we inactivated Notch signaling conditionally in the endoderm using a Shh-Cre deleter mouse line and mice carrying floxed alleles of the Pofut1 gene, which encodes an O-fucosyltransferase essential for Notch-ligand binding. We also took the same conditional approach to inactivate expression of Rbpjk, which encodes the transcriptional effector of canonical Notch signaling. Strikingly, these mutants showed an almost identical lung phenotype characterized by an absence of secretory Clara cells without evidence of cell death, and showed airways populated essentially by ciliated cells, with an increase in neuroendocrine cells. This phenotype could be further replicated in cultured wild-type lungs by disrupting Notch signaling with a gamma-secretase inhibitor. Our data suggest that Notch acts when commitment to a ciliated or non-ciliated cell fate occurs in proximal progenitors, silencing the ciliated program in the cells that will continue to expand and differentiate into secretory cells. This mechanism may be crucial to define the balance of differentiated cell profiles in different generations of the developing airways. It might also be relevant to mediate the metaplastic changes in the respiratory epithelium that occur in pathological conditions, such as asthma and chronic obstructive pulmonary disease.
Resumo:
Objective. To investigate the short-term effects of exposure to particulate matter from biomass burning in the Amazon on the daily demand for outpatient care due to respiratory diseases in children and the elderly. Methods. Epidemiologic study with ecologic time series design. Daily consultation records were obtained from the 14 primary health care clinics in the municipality of Alta Floresta, state of Mato Grosso, in the southern region of the Brazilian Amazon, between January 2004 and December 2005. Information on the daily levels of fine particulate matter was made available by the Brazilian National Institute for Spatial Research. To control for confounding factors ( situations in which a non-causal association between exposure and disease is observed due to a third variable), variables related to time trends, seasonality, temperature, relative humidity, rainfall, and calendar effects ( such as occurrence of holidays and weekends) were included in the model. Poisson regression with generalized additive models was used. Results. A 10 mu g/m(3) increase in the level of exposure to particulate matter was associated with increases of 2.9% and 2.6% in outpatient consultations due to respiratory diseases in children on the 6th and 7th days following exposure. Significant associations were not observed for elderly individuals. Conclusions. The results suggest that the levels of particulate matter from biomass burning in the Amazon are associated with adverse effects on the respiratory health of children.
Resumo:
Cell shape, signaling, and integrity depend on cytoskeletal organization. In this study we describe the cytoskeleton as a simple network of filamentary proteins (links) anchored by complex protein structures (nodes). The structure of this network is regulated by a distance-dependent probability of link formation as P = p/d(s), where p regulates the network density and s controls how fast the probability for link formation decays with node distance (d). It was previously shown that the regulation of the link lengths is crucial for the mechanical behavior of the cells. Here we examined the ability of the two-dimensional network to percolate (i.e. to have end-to-end connectivity), and found that the percolation threshold depends strongly on s. The system undergoes a transition around s = 2. The percolation threshold of networks with s < 2 decreases with increasing system size L, while the percolation threshold for networks with s > 2 converges to a finite value. We speculate that s < 2 may represent a condition in which cells can accommodate deformation while still preserving their mechanical integrity. Additionally, we measured the length distribution of F-actin filaments from publicly available images of a variety of cell types. In agreement with model predictions, cells originating from more deformable tissues show longer F-actin cytoskeletal filaments. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Syftet med litteraturstudien var att beskriva vilken livskvalitet barn och ungdomar med astma och deras föräldrar hade. Till resultatet användes tretton vetenskapliga artiklar publicerade tidigast år 2000. Databaserna Elin, Blackwell Synergy och Ebsco Host användes vid artikelsökningen och en manuell sökning gjordes via www.asthma.se. Sökorden asthma, child, parents, quality of life, experience och coping användes i olika kombinationer. Artikelurvalet gjordes för att passa litteraturstudiens syfte och frågeställningar och det vetenskapliga värdet i artiklarna skattades med hjälp av modifierade granskningsmallar. Resultatet visade att barn och ungdomar med astma hade relativt högt skattad livskvalitet och hade lärt sig att hitta strategier för att hantera sin sjukdom och därmed kunna leva ett så normalt liv som möjligt. Många av barnen och ungdomar testade gränser för hur mycket kroppen tålde genom påfrestande fysiska aktiviteter. För de ungdomarna som hade lågt skattad livskvalitet kunde orsakerna härledas till dålig kontrollerade astmasymtom eller då omgivningen påverkade barnet negativt. Flickor hade lägre livskvalitet än pojkar i studierna. Föräldrarna till barn och ungdomar med astma var generellt mer påverkade av barnets sjukdom än barnen själva. De fanns vissa skillnader mellan föräldrarna, mödrarna var mer bekymrade och oroade medan fäderna hade ett mer avslappnat förhållande till barnet och sjukdomen.