981 resultados para Artificial potential fields
Resumo:
Reuse of tire crumb in sport facilities is currently a very cost-effective waste management measure. Considering that incorporation of the waste materials in artificial turf would be facilitated if the rubber materials were already colored green, coatings were specifically developed for this purpose. This paper presents an experimental toxicological and environmental assessment aimed at comparing the obtained emissions to the environment in terms of polycyclic aromatic hydrocarbons (PAHs), heavy metals, and ecotoxicity for coated and noncoated rubber granulates. This study is a comprehensive evaluation of the major potential critical factors related with the release of all of these classes of pollutants because previous studies were not systematically performed. It was concluded that between the two types of coatings tested, one is particularly effective in reducing emissions to the environment, simultaneously meeting the requirements of adherence and color stability.
Resumo:
Magnetic resonance (MR) imaging has been used to analyse and evaluate the vocal tract shape through different techniques and with promising results in several fields. Our purpose is to demonstrate the relevance of MR and image processing for the vocal tract study. The extraction of contours of the air cavities allowed the set - up of a number of 3D reconstruction image stacks by means of the combination of orthogonally oriented sets of slices for e ach articulatory gesture, as a new approach to solve the expected spatial under sampling of the imaging process. In result these models give improved information for the visualization of morphologic and anatomical aspects and are useful for partial measure ments of the vocal tract shape in different situations. Potential use can be found in Medical and therapeutic applications as well as in acoustic articulatory speech modelling.
Resumo:
O presente trabalho pretendeu desenvolver e testar um sensor óptico para detectar ciclamato de sódio, um adoçante artificial utilizado nas bebidas em geral. A primeira abordagem neste sentido baseou-se na preparação de um sensor óptico através da formação de complexos corados entre o ciclamato e várias espécies metálicas, nomeadamente Hg(II), Ba(II), Fe(II), Ag(II), Pb(II), Cd(II), Mn (II), Ni(II), Cu(II), Co(II), Sn(II) e Mg(II). Perante a ausência de resultados satisfatórios optou-se por explorar a acção do ciclamato de sódio na transferência/partilha de um corante entre duas fases líquidas imiscíveis. As fases líquidas utilizadas foram a água e o clorofórmio. Testaram-se várias famílias de corantes mas só uma classe se mostrou com as características apropriadas para o objectivo pretendido. Dentro dessa família de corantes, seleccionou-se aquele que, à partida, garantiu o melhor desempenho. O sensor foi testado em diferentes condições de pH e também na presença de potenciais interferentes de forma a estabelecer as melhores condições de utilização. O método mostrou-se bastante simples de executar, rápido na obtenção de resultados e com boas características para ser avaliado visualmente, mas sempre de acordo com os critérios de objectividade que um trabalho deste tipo requer. Além o disso permitiu ser calibrado de uma forma rápida e simples, características essenciais para a aplicação deste método na despistagem de ciclamato em análises de rotina. O método desenvolvido foi ainda aplicado à análise de vinho dopado com diferentes concentrações de ciclamato de sódio. Destes testes verificou-se a necessidade de optimização do método através da introdução de outras substâncias na fase não aquosa diminuindo a vulnerabilidade do sensor a outros interferentes. Como conclusão, o método correspondeu às expectativas, mostrando-se viável para aplicação à análise de vinhos, ainda com uma margem significativa de desenvolvimento no sentido de o tornar mais fiável e preciso.
Resumo:
The impact of mycotoxins on human and animal health is well recognized. Aflatoxin B1 (AFB1) is by far the most prevalent and the most potent natural carcinogen and is usually the major aflatoxin produced by toxigenic fungal strains. Data available, points to an increasing frequency of poultry feed contamination by aflatoxins. Since aflatoxin residues may accumulate in body tissues, this represents a high risk to human health. Samples from commercial poultry birds have already presented detectable levels of aflatoxin in liver. A descriptive study was developed in order to assess fungal contamination by species from Aspergillus flavus complex in seven Portuguese poultry units. Air fungal contamination was studied by conventional and molecular methods. Air, litter and surfaces samples were collected. To apply molecular methods, air samples of 300L were collected using the Coriolis μ air sampler (Bertin Technologies), at 300 L/min airflow rate. For conventional methodologies, all the collected samples were incubated at 27ºC for five to seven days. Through conventional methods, Aspergillus flavus was the third fungal species (7%) most frequently found in 27 indoor air samples analysed and the most commonly isolated species (75%) in air samples containing only the Aspergillus genus...
Resumo:
A biomimetic sensor for norfloxacin is presented that is based on host-guest interactions and potentiometric transduction. The artificial host was imprinted into polymers made from methacrylic acid and/or 2-vinyl pyridine. The resulting particles were entrapped in a plasticized poly(vinyl chloride) (PVC) matrix. The sensors exhibit near-Nernstian response in steady state evaluations, and detection limits range from 0.40 to 1.0 μgmL−1, respectively, and are independent of pH values at between 2 and 6, and 8 and 11, respectively. Good selectivity was observed over several potential interferents. In flowing media, the sensors exhibit fast response, a sensitivity of 68.2 mV per decade, a linear range from 79 μM to 2.5 mM, a detection limit of 20 μgmL−1, and a stable baseline. The sensors were successfully applied to field monitoring of norfloxacin in fish samples, biological samples, and pharmaceutical products
Resumo:
Conferência: 9th International Symposium on Occupational Safety and Hygiene (SHO) Guimaraes, Portugal - FEB 14-15, 2013
Resumo:
Cork is a light, porous and impermeable material extracted from the bark of some trees. It is in manufacture of stoppers for wine bottles the main application of cork. It is estimated that the area occupied by cork oaks in the Iberian Peninsula is around 33% in Portugal and 23% in Spain. The world production of cork is focused in the south Europe, with Portugal being the most important producer followed by Spain. According to Companies Directory more than 100 manufactories from Portugal has their branch associated with the preparation and fabrication of cork. Cork workers are at risk for developing diseases of the respiratory tract such as occupational asthma and Suberosis, a form of pulmonary hypersensitivity due to repeated exposure to mouldy cork dust. In this review study papers from 2000 were analyzed to better understand which fungi species are associated with occupational disease in cork workers. The most prevalent fungi species in these workers that are associated with those occupational diseases are Penicilliumglabrum, Chrysoniliasitophila and Trichodermalongibrachiatum. Therefore, a specific knowledge about occupational exposure to fungi in the cork industry is the key to better understand the related diseases and to define preventive measures. Given the importance of this occupational setting in Portugal is essential to evaluate the combined exposure of fungi and particles and their metabolites. Further studies concerning exposure assessment to fungi and particles in the cork industry must be developed.
Resumo:
The oceans remain a major source of natural compounds with potential in pharmacology. In particular, during the last few decades, marine cyanobacteria have been in focus as producers of interesting bioactive compounds, especially for the treatment of cancer. In this study, the anticancer potential of extracts from twenty eight marine cyanobacteria strains, belonging to the underexplored picoplanktonic genera, Cyanobium, Synechocystis and Synechococcus, and the filamentous genera, Nodosilinea, Leptolyngbya, Pseudanabaena and Romeria, were assessed in eight human tumor cell lines. First, a crude extract was obtained by dichloromethane:methanol extraction, and from it, three fractions were separated in a Si column chromatography. The crude extract and fractions were tested in eight human cancer cell lines for cell viability/toxicity, accessed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and lactic dehydrogenase release (LDH) assays. Eight point nine percent of the strains revealed strong cytotoxicity; 17.8% showed moderate cytotoxicity, and 14.3% assays showed low toxicity. The results obtained revealed that the studied genera of marine cyanobacteria are a promising source of novel compounds with potential anticancer activity and highlight the interest in also exploring the smaller filamentous and picoplanktonic genera of cyanobacteria.
Resumo:
In this work, SnxSy thin films have been grown on soda-lime glass substrates by sulphurization of metallic precursors in a nitrogen plus sulphur vapour atmosphere. Different sulphurization temperatures were tested, ranging from 300 °C to 520 °C. The resulting phases were structurally investigated by X-Ray Diffraction and Raman spectroscopy. Composition was studied using Energy Dispersive Spectroscopy being then correlated with the sulphurization temperature. Optical measurements were performed to obtain transmittance and reflectance spectra, from which the energy band gaps, were estimated. The values obtained were 1.17 eV for the indirect transition and for the direct transition the values varied from 1.26 eV to 1.57 eV. Electrical characterization using Hot Point Probe showed that all samples were p-type semiconductors. Solar cells were built using the structure: SLG/Mo/SnxSy/CdS/ZnO:Ga and the best result for solar cell efficiency was 0.17%.
Resumo:
Ancillary services represent a good business opportunity that must be considered by market players. This paper presents a new methodology for ancillary services market dispatch. The method considers the bids submitted to the market and includes a market clearing mechanism based on deterministic optimization. An Artificial Neural Network is used for day-ahead prediction of Regulation Down, regulation-up, Spin Reserve and Non-Spin Reserve requirements. Two test cases based on California Independent System Operator data concerning dispatch of Regulation Down, Regulation Up, Spin Reserve and Non-Spin Reserve services are included in this paper to illustrate the application of the proposed method: (1) dispatch considering simple bids; (2) dispatch considering complex bids.
Resumo:
Portugal has been the world leader in the cork sector in terms of exports, employing ten thousands of workers. In this working activity, the permanent contact with cork may lead to the exposure to fungi, raising concerns as potential occupational hazards in cork industry. The application of molecular tools is crucial in this setting, since fungal species with faster growth rates may hide other species with clinical relevance, such as species belonging to P. glabrum and A. fumigatus complexes. A study was developed aiming at assessing fungal contamination due to Aspergillus fumigatus complex and Penicillium glabrum complex by molecular methods in three cork industries in the outskirt of Lisbon city.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
This work presents the results of the experimental study of proton induced nuclear reactions in lithium, namely the 7Li(p,α) 4He, 6Li(p,α) 3He and 7Li(p,p)7Li reactions. The amount of 7Li and 6Li identified as primordial and observed in very old stars of the Milky Way galactic halo strongly deviates from the predictions of primordial nucleosynthesis and stellar evolution models which depend, among other factors, on the cross sections of reactions like 7Li(p,α) 4He and 6Li(p,α) 3He. These discrepancies have triggered a large amount of research in the fields of stellar evolution, cosmology, pre-galactic evolution and low energy nuclear reactions. Focusing on nuclear reactions, this work has measured the 7Li(p,α) 4He and 6Li(p,α) 3He reactions cross sections (expressed in terms of the astrophysical S -factor) with higher accuracy, and the electron screening effects in these reactions for different environments (insulators and metallic targets). The 7Li(p,α) 4He angular distributions were also measured. These measurementstook place in two laboratory facilities, in the framework of the LUNA (Laboratory for Undergroud Nuclear Astrophysics) international collaboration, namely the Laboratorio ´ de Feixe de Ioes ˜ in ITN (Instituto Tecnologico ´ e Nuclear) Sacavem, ´ Portugal, and the Dynamitron-TandemLaboratorium in Ruhr-Universitat¨ Bochum, Germany. The ITN target chamber was modified to measure these nuclear reactions, with the design and construction of new components, the addition of one turbomolecular pump and a cold finger. The 7Li(p,α) 4He and 6Li(p,α) 3He reactions were measured concurrently with seven and four targets, respectively. These targets were produced in order to obtain adequate and stable lithium depth profiles. In metallic environments, the measured electron screening potential energies are much higher than the predictions of atomic-physics models. The Debye screening model applied to the metallic conduction electrons is able to explain these high values. It is a simple model, but also very robust. Concerning primordial nucleosynthesis and stellar evolution models, these results are very important as they show that laboratory measurements are well controlled, and the model inputs from these cross sections are therefore correct. In this work the 7Li(p,p)7Li differential cross section was also measured, which is useful to describe the 7Li(p,α) 4He entrance channel.
Resumo:
Medical imaging is a powerful diagnostic tool. Consequently, the number of medical images taken has increased vastly over the past few decades. The most common medical imaging techniques use X-radiation as the primary investigative tool. The main limitation of using X-radiation is associated with the risk of developing cancers. Alongside this, technology has advanced and more centres now use CT scanners; these can incur significant radiation burdens compared with traditional X-ray imaging systems. The net effect is that the population radiation burden is rising steadily. Risk arising from X-radiation for diagnostic medical purposes needs minimising and one way to achieve this is through reducing radiation dose whilst optimising image quality. All ages are affected by risk from X-radiation however the increasing population age highlights the elderly as a new group that may require consideration. Of greatest concern are paediatric patients: firstly they are more sensitive to radiation; secondly their younger age means that the potential detriment to this group is greater. Containment of radiation exposure falls to a number of professionals within medical fields, from those who request imaging to those who produce the image. These staff are supported in their radiation protection role by engineers, physicists and technicians. It is important to realise that radiation protection is currently a major European focus of interest and minimum competence levels in radiation protection for radiographers have been defined through the integrated activities of the EU consortium called MEDRAPET. The outcomes of this project have been used by the European Federation of Radiographer Societies to describe the European Qualifications Framework levels for radiographers in radiation protection. Though variations exist between European countries radiographers and nuclear medicine technologists are normally the professional groups who are responsible for exposing screening populations and patients to X-radiation. As part of their training they learn fundamental principles of radiation protection and theoretical and practical approaches to dose minimisation. However dose minimisation is complex – it is not simply about reducing X-radiation without taking into account major contextual factors. These factors relate to the real world of clinical imaging and include the need to measure clinical image quality and lesion visibility when applying X-radiation dose reduction strategies. This requires the use of validated psychological and physics techniques to measure clinical image quality and lesion perceptibility.
Resumo:
Worldwide formaldehyde is manipulated with diverse usage properties, since industrial purposes to health laboratory objectives, representing the economic importance of this chemical agent. Therefore, many people are exposed to formaldehyde environmentally and/or occupationally. Considering the latter, there was recommended occupational exposure limits based on threshold mechanisms, limit values and indoor guidelines. Formaldehyde is classified by the International Agency for Cancer Research (IARC) as carcinogenic to humans (group 1), since a wide range of epidemiological studies in occupational exposure settings have suggested possible links between the concentration and duration of exposure and elevated risks of nasopharyngeal cancer, and others cancers, and more recently, with leukemia. Although there are different classifications, such as U.S. EPA that classified formaldehyde as a B1 compound, probable human carcinogen under the conditions of unusually high or prolonged exposure, on basis of limited evidence in humans but with sufficient evidence in animals. Formaldehyde genotoxicity is well-known, being a direct-acting genotoxic compound positively associated for almost all genetic endpoints evaluated in bacteria, yeast, fungi, plants, insects, nematodes, and cultured mammalian cells. There are many human biomonitoring studies that associate formaldehyde occupational exposure to genomic instability, and consequently possible health effects. Besides the link with cancer, also other pathologies and symptoms are associated with formaldehyde exposure, namely respiratory disorders such as asthma, and allergic contact dermatitis. Nowadays, there are efforts to reduce formaldehyde exposure, namely indoor. Europe and United States developed more strict regulation regarding formaldehyde emissions from materials containing this agent. Despite the regulations and restrictions, formaldehyde still continues to be difficult to eliminate or substitute, being biomonitoring an important tool to control possible future health effects.