901 resultados para Arthurian cycle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Galactic cosmic rays (GCRs) are extremely difficult to shield against and pose one of the most severe long-term hazards for human exploration of space. The recent solar minimum between solar cycles 23 and 24 shows a prolonged period of reduced solar activity and low interplanetary magnetic field strengths. As a result, the modulation of GCRs is very weak, and the fluxes of GCRs are near their highest levels in the last 25 years in the fall of 2009. Here we explore the dose rates of GCRs in the current prolonged solar minimum and make predictions for the Lunar Reconnaissance Orbiter (LRO) Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which is now measuring GCRs in the lunar environment. Our results confirm the weak modulation of GCRs leading to the largest dose rates seen in the last 25 years over a prolonged period of little solar activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept that open magnetic flux of the Sun (rooted with one and only one footpoint at the Sun) is a conserved quantity is taking root in the heliospheric community. Observations show that the Sun's open magnetic flux returns to the baseline from one solar minimum to the next. The temporary enhancement in the 1 AU heliospheric magnetic flux near solar maximum can be accounted for by the temporary creation of closed magnetic flux (with two footpoints at the Sun) during the ejection of coronal mass ejections (CMEs), which are more frequent near solar maximum. As a part of the International Heliophysical Year activities, this paper reviews two recently discussed consequences of open flux conservation: the reversal of open magnetic flux over the solar cycle driven by Coronal Mass Ejections and the impacts of open flux conservation on the global structure of the heliospheric magnetic field. These studies demonstrate the inherent linkages between coronal mass ejections, footpoint motions back at the Sun, and the global structure and evolution of the heliospheric magnetic field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 11-year solar cycle variation in the heliospheric magnetic field strength can be explained by the temporary buildup of closed flux released by coronal mass ejections (CMEs). If this explanation is correct, and the total open magnetic flux is conserved, then the interplanetary-CME closed flux must eventually open via reconnection with open flux close to the Sun. In this case each CME will move the reconnected open flux by at least the CME footpoint separation distance. Since the polarity of CME footpoints tends to follow a pattern similar to the Hale cycle of sunspot polarity, repeated CME eruption and subsequent reconnection will naturally result in latitudinal transport of open solar flux. We demonstrate how this process can reverse the coronal and heliospheric fields, and we calculate that the amount of flux involved is sufficient to accomplish the reversal within the 11 years of the solar cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The uptake and storage of anthropogenic carbon in the North Atlantic is investigated using different configurations of ocean general circulation/carbon cycle models. We investigate how different representations of the ocean physics in the models, which represent the range of models currently in use, affect the evolution of CO2 uptake in the North Atlantic. The buffer effect of the ocean carbon system would be expected to reduce ocean CO2 uptake as the ocean absorbs increasing amounts of CO2. We find that the strength of the buffer effect is very dependent on the model ocean state, as it affects both the magnitude and timing of the changes in uptake. The timescale over which uptake of CO2 in the North Atlantic drops to below preindustrial levels is particularly sensitive to the ocean state which sets the degree of buffering; it is less sensitive to the choice of atmospheric CO2 forcing scenario. Neglecting physical climate change effects, North Atlantic CO2 uptake drops below preindustrial levels between 50 and 300 years after stabilisation of atmospheric CO2 in different model configurations. Storage of anthropogenic carbon in the North Atlantic varies much less among the different model configurations, as differences in ocean transport of dissolved inorganic carbon and uptake of CO2 compensate each other. This supports the idea that measured inventories of anthropogenic carbon in the real ocean cannot be used to constrain the surface uptake. Including physical climate change effects reduces anthropogenic CO2 uptake and storage in the North Atlantic further, due to the combined effects of surface warming, increased freshwater input, and a slowdown of the meridional overturning circulation. The timescale over which North Atlantic CO2 uptake drops to below preindustrial levels is reduced by about one-third, leading to an estimate of this timescale for the real world of about 50 years after the stabilisation of atmospheric CO2. In the climate change experiment, a shallowing of the mixed layer depths in the North Atlantic results in a significant reduction in primary production, reducing the potential role for biology in drawing down anthropogenic CO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transpolar voltages observed during traversals of the polar cap by the Defense Meteorological Satellite Program (DMSP) F-13 spacecraft during 2001 are analyzed using the expanding-contracting polar cap model of ionospheric convection. Each of the 10,216 passes is classified by its substorm phase or as a steady convection event (SCE) by inspection of the AE indices. For all phases, we detect a contribution to the transpolar voltage by reconnection in both the dayside magnetopause and in the crosstail current sheet. Detection of the IMF influence is 97% certain during quiet intervals and >99% certain during substorm/SCE growth phases but falls to 75% in substorm expansion phases: It is only 27% during SCEs. Detection of the influence of the nightside voltage is only 19% certain during growth phases, rising during expansion phases to a peak of 96% in recovery phases: During SCEs, it is >99%. The voltage during SCEs is dominated by the nightside, not the dayside, reconnection. On average, substorm expansion phases halt the growth phase rise in polar cap flux rather than reversing it. The main destruction of the excess open flux takes place during the 6- to 10-hour interval after the recovery phase (as seen in AE) and at a rate which is relatively independent of polar cap flux because the NENL has by then retreated to the far tail. The best estimate of the voltage associated with viscous-like transfer of closed field lines into the tail is around 10 kV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A time series of the observed transport through an array of moorings across the Mozambique Channel is compared with that of six model runs with ocean general circulation models. In the observations, the seasonal cycle cannot be distinguished from red noise, while this cycle is dominant in the transport of the numerical models. It is found, however, that the seasonal cycles of the observations and numerical models are similar in strength and phase. These cycles have an amplitude of 5 Sv and a maximum in September, and can be explained by the yearly variation of the wind forcing. The seasonal cycle in the models is dominant because the spectral density at other frequencies is underrepresented. Main deviations from the observations are found at depths shallower than 1500 m and in the 5/y–6/y frequency range. Nevertheless, the structure of eddies in the models is close to the observed eddy structure. The discrepancy is found to be related to the formation mechanism and the formation position of the eddies. In the observations, eddies are frequently formed from an overshooting current near the mooring section, as proposed by Ridderinkhof and de Ruijter (2003) and Harlander et al. (2009). This causes an alternation of events at the mooring section, varying between a strong southward current, and the formation and passing of an eddy. This results in a large variation of transport in the frequency range of 5/y–6/y. In the models, the eddies are formed further north and propagate through the section. No alternation similar to the observations is observed, resulting in a more constant transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is ongoing debate concerning the possible environmental and human health impacts of growing genetically modified (GM) crops. Here, we report the results of a life-cycle assessment (LCA) comparing the environmental and human health impacts of conventional sugar beet growing regimes in the UK and Germany with those that might be expected if GM herbicide-tolerant (to glyphosate) sugar beet is commercialized. The results presented for a number of environmental and human health impact categories suggest that growing the GM herbicide-tolerant crop would be less harmful to the environment and human health than growing the conventional crop, largely due to lower emissions from herbicide manufacture, transport and field operations. Emissions contributing to negative environmental impacts, such as global warming, ozone depletion, ecotoxicity of water and acidification and nutrification of soil and water, were much lower for the herbicide-tolerant crop than for the conventional crop. Emissions contributing to summer smog, toxic particulate matter and carcinogenicity, which have negative human health impacts, were also substantially lower for the herbicide-tolerant crop. The environmental and human health impacts of growing GM crops need to be assessed on a case-by-case basis using a holistic approach. LCA is a valuable technique for helping to undertake such assessments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Life-Cycle Assessment (LCA) was used to assess the potential environmental and human health impacts of growing genetically-modified (GM), herbicide-tolerant sugar beet in the UK and Germany compared with conventional sugar beet varieties. The GM variety results in lower potential environmental impacts on global warming, airborne nutrification, ecotoxicity (of soil and water) and watercourse enrichment, and lower potential human health impacts in terms of production of toxic particulates, summer smog, carcinogens and ozone depletion. Although the overall contribution of GM sugar beet to reducing harmful emissions to the environment would be relatively small, the potential for GM crops to reduce pollution from agriculture, including diffuse water pollution, is highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents the methods and results of a life-cycle assessment (LCA) applied to the production of maize grain from a conventional variety compared with maize grain from a variety genetically modified to be herbicide tolerant and insect protected and to contain an enhanced oil and lysine content, and its impact when fed to broiler chickens. The findings show that there are both environmental and human health benefits of growing GM maize including lower impacts on global warming, ozone depletion, freshwater ecotoxicity and human toxicity. However, when considered in terms of the use of maize as a feed input to broiler chicken production, the benefits of the GM alternative become negligible compared to the use of conventional maize.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract 1.7.4

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agriculture, particularly intensive crop production, makes a significant contribution to environmental pollution. A variety of canola (Brassica napus) has been genetically modified to enhance nitrogen use efficiency, effectively reducing the amount of fertilizer required for crop production. A partial life-cycle assessment adapted to crop production was used to assess the potential environmental impacts of growing genetically modified, nitrogen use-efficient (GMNUE) canola in North Dakota and Minnesota compared with a conventionally bred control variety. The analysis took into account the entire production system used to produce 1 tonne of canola. This comprised raw material extraction, processing and transportation, as well as all agricultural field operations. All emissions associated with the production of 1 tonne of canola were listed, aggregated and weighted in order to calculate the level of environmental impact. The findings show that there are a range of potential environmental benefits associated with growing GMNUE canola. These include reduced impacts on global warming, freshwater ecotoxicity, eutrophication and acidification. Given the large areas of canola grown in North America and, in particular, Canada, as well as the wide acceptance of genetically modified varieties in this area, there is the potential for GMNUE canola to reduce pollution from agriculture, with the largest reductions predicted to be in greenhouse gases and diffuse water pollution.