897 resultados para Anthropology, Cultural|History, Black|Sociology, Social Structure and Development
Resumo:
Hantaviruses, members of the genus Hantavirus in the Bunyaviridae family, are enveloped single-stranded RNA viruses with tri-segmented genome of negative polarity. In humans, hantaviruses cause two diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS), which vary in severity depending on the causative agent. Each hantavirus is carried by a specific rodent host and is transmitted to humans through excreta of infected rodents. The genome of hantaviruses encodes four structural proteins: the nucleocapsid protein (N), the glycoproteins (Gn and Gc), and the polymerase (L) and also the nonstructural protein (NSs). This thesis deals with the functional characterization of hantavirus N protein with regard to its structure. Structural studies of the N protein have progressed slowly and the crystal structure of the whole protein is still not available, therefore biochemical assays coupled with bioinformatical modeling proved essential for studying N protein structure and functions. Presumably, during RNA encapsidation, the N protein first forms intermediate trimers and then oligomers. First, we investigated the role of N-terminal domain in the N protein oligomerization. The results suggested that the N-terminal region of the N protein forms a coiled-coil, in which two antiparallel alpha helices interact via their hydrophobic seams. Hydrophobic residues L4, I11, L18, L25 and V32 in the first helix and L44, V51, L58 and L65 in the second helix were crucial for stabilizing the structure. The results were consistent with the head-to-head, tail-to-tail model for hantavirus N protein trimerization. We demonstrated that an intact coiled-coil structure of the N terminus is crucial for the oligomerization capacity of the N protein. We also added new details to the head-to-head, tail-to-tail model of trimerization by suggesting that the initial step is based on interaction(s) between intact intra-molecular coiled-coils of the monomers. We further analyzed the importance of charged aa residues located within the coiled-coil for the N protein oligomerization. To predict the interacting surfaces of the monomers we used an upgraded in silico model of the coiled-coil domain that was docked into a trimer. Next the predicted target residues were mutated. The results obtained using the mammalian two-hybrid assay suggested that conserved charged aa residues within the coiled-coil make a substantial contribution to the N protein oligomerization. This contribution probably involves the formation of interacting surfaces of the N monomers and also stabilization of the coiled-coil via intramolecular ionic bridging. We proposed that the tips of the coiled-coils are the first to come into direct contact and thus initiate tight packing of the three monomers into a compact structure. This was in agreement with the previous results showing that an increase in ionic strength abolished the interaction between N protein molecules. We also showed that residues having the strongest effect on the N protein oligomerization are not scattered randomly throughout the coiled-coil 3D model structure, but form clusters. Next we found evidence for the hantaviral N protein interaction with the cytoplasmic tail of the glycoprotein Gn. In order to study this interaction we used the GST pull-down assay in combination with mutagenesis technique. The results demonstrated that intact, properly folded zinc fingers of the Gn protein cytoplasmic tail as well as the middle domain of the N protein (that includes aa residues 80 248 and supposedly carries the RNA-binding domain) are essential for the interaction. Since hantaviruses do not have a matrix protein that mediates the packaging of the viral RNA in other negatve stranded viruses (NSRV), hantaviral RNPs should be involved in a direct interaction with the intraviral domains of the envelope-embedded glycoproteins. By showing the N-Gn interaction we provided the evidence for one of the crucial steps in the virus replication at which RNPs are directed to the site of the virus assembly. Finally we started analysis of the N protein RNA-binding region, which is supposedly located in the middle domain of the N protein molecule. We developed a model for the initial step of RNA-binding by the hantaviral N protein. We hypothesized that the hantaviral N protein possesses two secondary structure elements that initiate the RNA encapsidation. The results suggest that amino acid residues (172-176) presumably act as a hook to catch vRNA and that the positively charged interaction surface (aa residues 144-160) enhances the initial N-RNA interacation. In conclusion, we elucidated new functions of hantavirus N protein. Using in silico modeling we predicted the domain structure of the protein and using experimental techniques showed that each domain is responsible for executing certain function(s). We showed that intact N terminal coiled-coil domain is crucial for oligomerization and charged residues located on its surface form a interaction surface for the N monomers. The middle domain is essential for interaction with the cytoplasmic tail of the Gn protein and RNA binding.
Resumo:
Transition-metal phosphites of cobalt and vanadium, [C4N2H12][Co(HPO3)(2)] (I), [C4N2H14][Co(HPO3)(2)] (II), [Co[C4H8N12)(H2PO3)(2)] (III),[C4N2H14][(VF)-F-III(HPO3)(2)]center dot H2O (IV), and[C3N2H5](2)[V-4(III)(H2O)(3)(HPO3)(4)(HPO4)(3)] (V), have been synthesized and characterized. Organophosphorus esters were employed to stabilize cobalt in tetrahedral coordination and also to prepare the low-dimensional structures, which are otherwise difficult to synthesize. The structures have one- (I, II, IV), two- (III) and three-dimensionally (V) extended networks built up by the linking of metal polyhedra and phosphite units. Another vanadyl phosphite, [C2N2H10][((VO)-O-IV)(3)(H2O) (HPO3)(4)]center dot H2O,([15]) was also prepared and investigated extensively by ESR, magnetic susceptibility, and other studies. All the compounds in the present study exhibit antiferromagnetic interactions. Well-established magnetic models have been used to fit the experimental data. The compounds havealso been characterized in detail by using UV/Vis spectroscopic studies.
Resumo:
Rapid solidification of an equiatomic In-Se alloy resulted in the formation of an equilibrium InSe-In6Se7 phase mixture. The InSe phase was found to be polytypic and exhibited the structural variants 2H, 3H, and 4H. The 4H polytype was found to be in considerably higher proportion compared to 2H and 3H types. The In6Se7 phase was found to be hexagonal with a=0.8919 nm and c=1.4273 nm. Both In6Se 7 and the polytypes of InSe could be identified with the space group P61. The conductivity σ variation with temperature was found to be similar to that observed in disordered semiconducting materials. For temperatures >200 K, ln σ decreased linearly with T-1, phonon-assisted carrier excitation. For temperatures <200 K, ln σ decrease followed T-1/3 behavior, representative of variable-range hopping conduction of electrons.
Resumo:
A comparative study of the switching properties of pure and √-irradiated TGSe crystals has been carried out to see the effect of irradiation on the structure and dynamics of domains. The switching behaviour of √-irradiated TGSe has been found to be qualitatively similar to that of unirradiated crystal and this has been interpreted in terms of structural inhibition caused by the formation of radiolysis products as well as the difference between the domain structures of the unirradiated and irradiated samples. Confirmation of this has been obtained by studying the domain patterns using the etch method.
Resumo:
ingle tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G(7)) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the O6 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. There quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 Angstrom from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Nai counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. in the absence of any coordinated ion. due to strong mutual repulsion, O6 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures.
Resumo:
Molecular dynamics investigation of benzene in one-dimensional channel systems A1PO(4)-5, VPI-5, and carbon nanotube is reported. The results suggest that, in all the three host systems, the plane of benzene is almost perpendicular to the channel axis when the molecule is near the center of the channel and the plane of benzene is parallel to the channel axis when the molecule is near the wall of the channel. The density distribution of benzene as a function of channel length, z and the radial distance, r, from the channel axis is also different in the three host structures. Anisotropy in translational diffusion coefficient, calculated in body-fixed frame of benzene, suggests that benzene prefers to move with its plane parallel to the direction of motion in A1PO(4)-5 and VPI-5 whereas in carbon nanotube the motion occurs predominantly with the plane of the benzene perpendicular to the direction of motion.;Anisotropy associated with the rotational motion is seen to alter significantly in confinement as compared to liquid benzene. In A1PO(4)-5, the rotational anisotropy is reversed as compared to liquid benzene thereby suggesting that anisotropy arising out of molecular geometry can be reduced. Reorientational correlation times for C-6 and C-2 axes Of benzene are reported. Apart from the inertial decay of reorientational correlation function due to free, rotation, two other distinct regimes of decay are observed in narrower channels (AIPO(4)-5 and carbon nanotube): (i) an initial fast decay (0.5-2 ps) and (ii) a slower decay (>2 ps) of reorientational correlation function where C-6 decays slower than C-2 Similar to what is observed in liquid benzene. In the initial fast decay, it is seen that the decay for C-6 is faster than C-2 which is in contrast to what is observed in liquid benzene or for benzene confined in VPI-5.
Resumo:
The copper(II) complex [Cu(salgly) (bpy)] . 4H(2)O (1), where salgly is a tridentate glycinatosalicylaldimine Schiffbase Ligand, is prepared and structurally characterized. The complex is found to be catalytically active in the oxidation of ascorbic acid by dioxygen and the process is also effective in the presence of benzylamine giving benzaldehyde as a product, thus modeling the activity of the Cu-B site of dopamine beta-hydroxylase. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The application of different cooling rates as a strategy to enhance the structure of aluminium foams is studied. The potential to influence the level of morphological defects and cell size non-uniformities is investigated. AlSi6Cu4 alloy was foamed through the powder compact route and then solidified, applying three different cooling rates. Foam development was monitored in situ by means of X-ray radioscopy while foaming inside a closed mould. The macro-structure of the foams was analysed in terms of cell size distribution as determined by X-ray tomography. Compression tests were conducted to assess the mechanical performance of the foams and measured properties were correlated with structural features of the foams. Moreover, possible changes in the ductile brittle nature of deformation with cooling rate were analysed by studying the initial stages of deformation. We observed improvements in the cell size distributions, reduction in microporosity and grain size at higher cooling rates, which in turn led to a notable enhancement in compressive strength. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Double perovskite oxides Sr2FeMoO6 have attracted a great interest for their peculiar magneto-transport properties, and, ill particular, for the large values of low-field magneto-resistance (MR) which remains elevated even at room temperature, thanks to their high Curie temperature (T-c > 400 K). These properties are strongly influenced by chemical cation disorder, that is by the relative arrangement of Fe and Mo on their sublattices: the regular alternation of Fe and Mo enhances the M R and saturation magnetization. On the contrary the disorder generally depresses the magnetization and worsen the MR response. In this work the X-ray absorption fine structure (XAFS) technique has been employed in order to probe the cation order from a local point of view. XAFS spectra were collected at the Fe and Mo K edges on Sr2FeMoO6 samples with different degree of long-range chemical order. The XAFS results prove that a high degree of short-range cation order is preserved, despite the different long-range order: the Fe-Mo correlations are always preferred over the Fe-Fe and Mo-Mo ones in the perfectly ordered as well as in highly disordered samples.
Resumo:
The light green coloured complexes of general formula [(ReO)-O-V(L)CI(OH2)]Cl have been synthesised in good yields by reacting [RcvOCl(3)(AsPh3)21 with HL in dichloromethane in dinitrogen atmosphere. Here, L- is the deprotonated form of N',N'-bis(2-pyridylmethyl)amine (HL1); N-(2-pyridylmethyl)-N',N'-dimethylethylenediamine (HL2) and N-(2-pyridylmethyl)-N',N-diethylethylenediamine (HL3). Single crystal X-ray structure determination of [(ReO)-O-V(L-1)Cl(OH2)Cl confirms the amido binding of ReO3+ species. In the solid state of [(ReO)-O-V(L-1)Cl(OH2)]Cl, the coordinated and counter chloride ions are engaged in Re-Cl... H-C(ring), Cl...H-C(ring) and Re(OH2)...Cl hydrogen bonding and forming of a supramolecular network in the solid state. The subunit of the supramolecular network consists of one eight-membered and two nine-membered hydrogen bonded rings. The average diameters of eight-membered and nine-membered rings are similar to 3.70 and similar to 5.26 angstrom, respectively.
Resumo:
Thiosemicarbazones are having the ability to bind with metal and inhibit the enzyme ribonucleoside diphosphate reductase(RDR),an enzyme which is involved in the synthesis of DNA precursors in the mammalian cells.The title compound N-methyl-t-3-methyl-r-2, c-6-diphenylpiperidin-4-one thiosemicarbazone (NMMDPT), CCDC 218052, was prepared using Mannich reaction and characterized by X-ray diffraction methods.The crystal data are:C20H24N4S; M.W= 352.49, triclinic,space group P (1) over bar, a = 8.467(2)angstrom, b = 10.228(2)angstrom, c = 12.249(2)angstrom; lpha=92.595(3)degrees, beta=104.173(3)degrees, gamma=13.628(3)degrees; V=930.0(3)angstrom(3), Z=2, D-cal=1.259Mgm(-3),mu=0.184mm(-1),lambda (MoKalpha)=0.71073 angstrom, final R1 and wR2 are 0.0470 and 0.1052, respectively. The piperidine rings adopt chair conformation. The planar phenyl rings are oriented equatorially at 2,6-positions of the piperidine ring. The molecular packing can be viewed as dimers held together by two N-H...S types of intermolecular hydrogen bonds. Weak C-H...pi interactions also support the stability of the molecules in the crystal in addition to van der Waals forces. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The compound Bi3W2O10.5 was synthesized by the solid-state technique from Bi2O3 and WO3 in stoichiometric quantities. Single crystals were grown by the melt-cooling technique and the crystal structure was solved in the tetragonal 141in space group with a = 3.839 (1) A, c = 16-3S2 (5) A, V = 241.4 (1) angstrom(3), Z = 4 and was refined to an R index of 0.0672. The structure represents a modification of the Aurivillius phase and consists of [Bi2O2](2+) units separated by WO8 polyhedra. a.c. impedance studies indicate oxide ion conductivity of 2.91 10(-5) cm(-1) at 600 degrees C.
Resumo:
Three new phosphonoacetate hybrid frameworks based on the actinide elements uranium and thorium have been synthesized. The compounds [C4N2H14][(UO2)(2)(O3PCH2COO)(2)]center dot H2O, I,[C4N2H14][(UO2)(2)(C2O4)(O3PCH2COOH)(2)], II, and Th(H2O)(2)(O3PCH2COO)(C2O4)(0.5). H2O, III, are built up from the connectivity between the metal polyhedra and the phosphonoacetate/oxalate units. Compound II has been prepared using a solvent-free approach, by a solid state reaction at 150 degrees C. It has been shown that II can also be prepared through a room temperature mechanochemical (grinding) route. The layer arrangement in III closely resembles to that observed in I. The compounds have been characterized by powder X-ray diffraction, IR spectroscopy, thermogravimetric analysis, and fluorescence studies.