908 resultados para Ankle-Foot Orthosis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heymann's nephritis (HN) in rats induced by injecting renal proximal tubule brush border protein gp330, is an animal model replicating human autoimmune membranous glomerulonephritis(1). Endogenous IgG gets deposited between the foot processes in the epithelial side of the glomerulus and causes complement-mediated membrane injury, leading to proteinuria and basement membrane thickening. We investigated the effect of a toxin, gelonin conjugated to gp330 and targetted against antigp330-producing cells in ameliorating immune injury and nephrotic state in rats. The groups of animals injected with purified gp330 revealed by immunofluorescence, characteristic granular deposits of IgG along the basement membrane. The rats intravenously injected with gelonin gp330 conjugate, four days after the antigenic challenge with gp330 in two doses, showed amelioration of the nephrotic state and appreciable reduction in glomerular IgG deposits against immune injury. This substantiates our earlier biochemical results and corroborates the possibility of using toxins conjugated to specific antigen in treating antibody-mediated autoimmune diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present observations of low-frequency recombination lines of carbon toward Cas A near 34.5 MHz (n similar to 575) using the Gauribidanur radio telescope and near 560 MHz (n similar to 225) and 770 MHz (n similar to 205) using the NRAO 140 foot (43 m) telescope in Greenbank. We also present high angular resolution (1') observations of the C270 alpha line near 332 MHz using the Very Large Array in B-configuration. A high signal-to-noise ratio spectrum is obtained at 34.5 MHz, which clearly shows a Voigt profile with distinct Lorentzian wings, resulting from significant pressure and radiation broadening at such high quantum numbers. The emission lines detected near 332, 550, and 770 MHz, on the other hand, are narrow and essentially Doppler-broadened. The measured Lorentzian width at 34.5 MHz constrains the allowed combinations of radiation temperature, electron density, and electron temperature in the line-forming region. Radiation broadening at 34.5 MHz places a lower limit of 115 pc on the separation between Cas A and the line-forming clouds. Modeling the variation in the integrated line-to-continuum ratio with frequency indicates that the region is likely to be associated with the cold atomic hydrogen component of the interstellar medium, and the physical properties of this region are likely to be T-e = 75 K, n(e) = 0.02 cm(-3), T-R100 = 3200 K, and n(H) T-e = 10,000 cm(-3) K. Comparison of the distribution of the C270 alpha recombination line emission across Cas A with that of (CO)-C-12 and H I also supports the above conclusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we analyze a novel Micro Opto Electro Mechanical Systems (MOEMS) race track resonator based vibration sensor. In this vibration sensor the straight portion of a race track resonator is located at the foot of the cantilever beam with proof mass. As the beam deflects due to vibration, stress induced refractive change in the waveguide located over the beam lead to the wavelength shift providing the measure of vibration. A wavelength shift of 3.19 pm/g in the range of 280 g for a cantilever beam of 1750μm×450m×20μmhas been obtained. The maximum acceleration (breakdown) for these dimensions is 2900g when a safety factor of 2 is taken into account. Since the wavelength of operation is around 1.55μm hybrid integration of source and detector is possible on the same substrate. Also it is less amenable to noise as wavelength shift provides the sensor signal. This type of sensors can be used for aerospace application and other harsh environments with suitable design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the development of a novel multipoint pressure sensor system suitable for the measurement of human foot pressure distribution has been presented. It essentially consists of a matrix of cantilever sensing elements supported by beams. Foil type strain gauges have been employed for the conversion of foot pressure in to proportional electrical response. Information on the signal conditioning circuitry used is given. Also, the results obtained on the performance of the system are included.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motion analysis is very essential in sport activities to enhance the performance of an athlete and to ensure the correctness of regimes. Expensive methods of motion analysis involving the use of sophisticated technology has led to limited application of motion analysis in sports. Towards this, in this paper we have integrated a low-cost method for motion analysis using three axis accelerometer, three axis magnetometer and microcontroller which are very accurate and easy to use. Seventeen male subjects performed two experiments, standing short jumps and long jumps over a wide range of take-off angles. During take-off and landing the acceleration and angles at different joints of the body are recorded using accelerometers and magnetometers, and the data is captured using Lab VIEW software. Optimum take-off angle in these jumps are calculated using the recorded data, to identify the optimum projection angle that maximizes the distance achieved in a jump. The results obtained for optimum take off angle in short jump and long jump is in agreement with those obtained using other methodologies and theoretical calculations assuming jump to be a projectile motion. The impact force (acceleration) is also analysed and is found to progressively decrease from foot to neck.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work proposes a new sensing methodology, which uses Fiber Bragg Gratings (FBGs) to measure in vivo the surface strain and strain rate on calf muscles while performing certain exercises. Two simple exercises, namely ankle dorsi-flexion and ankle plantar-flexion, have been considered and the strain induced on the medial head of the gastrocnemius muscle while performing these exercises has been monitored. The real time strain generated has been recorded and the results are compared with those obtained using a commercial Color Doppler Ultrasound (CDU) system. It is found that the proposed sensing methodology is promising for surface strain measurements in biomechanical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we present an approach to build a prototype. model of a first-responder localization system intended for disaster relief operations. This system is useful to monitor and track the positions of the first-responders in an indoor environment, where GPS is not available. Each member of the first responder team is equipped with two zero-velocity-update-aided inertial navigation systems, one on each foot, a camera mounted on a helmet, and a processing platform strapped around the waist of the first responder, which fuses the data from the different sensors. The fusion algorithm runs real-time on the processing platform. The video is also processed using the DSP core of the computing machine. The processed data consisting of position, velocity, heading information along with video streams is transmitted to the command and control system via a local infrastructure WiFi network. A centralized cooperative localization algorithm, utilizing the information from Ultra Wideband based inter-agent ranging devices combined with the position estimates and uncertainties of each first responder, has also been implemented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes an ab initio design and development of a novel Fiber Bragg Grating (FBG) sensor based strain sensing plate for the measurement of plantar strain distribution in human foot. The primary aim of this work is to study the feasibility of usage of FBG sensors in the measurement of plantar strain in the foot; in particular, to spatially resolve the strain distribution in the foot at different regions such as fore-foot, mid-foot and hind-foot. This study also provides a method to quantify and compare relative postural stability of different subjects under test; in addition, traditional accelerometers have been used to record the movements of center of gravity (second lumbar vertebra) of the subject and the results obtained have been compared against the outcome of the postural stability studies undertaken using the developed FBG plantar strain sensing plate. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heat fluxes around short, three-dimensional protuberances on sharp and blunt cones in hypersonic flow were experimentally measured using platinum thin-film sensors deposited on macor inserts. A parametric study of different protrusion geometries and flow conditions were conducted. Excessive heating was observed at locations near the protrusion where increased vorticity is expected, with the hottest spot being presented at the foot of the protuberance immediately upstream of it. If left unchecked, these hot spots could prove detrimental to hypersonic flight vehicles. Z-type schlieren technique was used to visualize the flow features qualitatively. New correlations to predict the heat flux at the hot spot have been proposed. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heat transfer rate and pressure measurements were made upstream of surface pro-tuberances on a flat plate and a sharp cone subjected to hypersonic flow in a conventional shock tunnel. Heat flux was measured using platinum thin-film sensors deposited on macor substrate and the pressure measurements were made using fast acting piezoelectric sensors. A distinctive hot spot with highest heat flux was obtained near the foot of the protuberance due to heavy vortex activity in the recirculating region. Schlieren flow visualization was used to capture the shock structures and the separation distance ahead of the protrusions was quantitatively measured for varying protuberance heights. A computational analysis was conducted on the flat plate model using commercial computational fluid dynamics software and the obtained trends of heat flux and pressure were compared with the experimental observation. Experiments were also conducted by physically disturbing the laminar boundary layer to check its effect on the magnitude of the hot spot heat flux. In addition to air, argon was also used as test gas so that the Reynolds number can be varied. (C) 2014 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Jansen mechanism is a one degree-of-freedom, planar, 12-link, leg mechanism that can be used in mobile robotic applications and in gait analysis. This paper presents the kinematics and dynamics of the Jansen leg mechanism. The forward kinematics, accomplished using circle intersection method, determines the trajectories of various points on the mechanism in the chassis (stationary link) reference frame. From the foot point trajectory, the step length is shown to vary linearly while step height varies non-linearly with change in crank radius. A dynamic model for the Jansen leg mechanism is proposed using bond graph approach with modulated multiport transformers. For given ground reaction force pattern and crank angular speed, this model helps determine the motor torque profile as well as the link and joint stresses. The model can therefore be used to rate the actuator torque and in design of the hardware and controller for such a system. The kinematics of the mechanism can also be obtained from this dynamic model. The proposed model is thus a useful tool for analysis and design of systems based on the Jansen leg mechanism. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental study was conducted on shock wave turbulent boundary layer interactions caused by a blunt swept fin-plate configuration at Mach numbers of 5.0, 7.8, 9.9 for a Reynolds number range of (1.0.similar to 4.7) x 10(7)/m. Detailed heat transfer and pressure distributions were measured at fin deflection angles of up to 30 degrees for a sweepback angle of 67.6 degrees. Surface oil flow patterns and liquid crystal thermograms as well as schlieren pictures of fin shock shape were taken. The study shows that the flow was separated at deflection of 10 degrees and secondary separation were detected at deflection of theta greater than or equal to 20 degrees. The heat transfer and pressure distributions on flat plate showed an extensive plateau region followed by a distinct dip and local peak close to the fin foot. Measurements of the plateau pressure and heat transfer were in good agreement with existing prediction methods, but pressure and heating peak measurements at M greater than or equal to 6 were significantly lower than predicted by the simple prediction techniques at lower Mach numbers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fibrillar structures are common features on the feet of many animals, such as geckos, spiders and flies. Theoretical analyses often use periodical array to simulate the assembly, and each fibril is assumed to be of equal load sharing (ELS). On the other hand, studies on a single fibril show that the adhesive interface is flaw insensitive when the size of the fibril is not larger than a critical one. In this paper, the Dugdale Barenblatt model has been used to study the conditions of ELS and how to enhance adhesion by tuning the geometrical parameters in fibrillar structures. Different configurations in an array of fibres are considered, such as line array, square and hexagonal patterns. It is found that in order to satisfy flaw-insensitivity and ELS conditions, the number of fibrils and the pull-off force of the fibrillar interface depend significantly on the fibre separation, the interface interacting energy, the effective range of cohesive interaction and the radius of fibrils. Proper tuning of the geometrical parameters will enhance the pull-off force of the fibrillar structures. This study may suggest possible methods to design strong adhesion devices for engineering applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A generalized plane strain JKR model is established for non-slipping adhesive contact between an elastic transversely isotropic cylinder and a dissimilar elastic transversely isotropic half plane, in which a pulling force acts on the cylinder with the pulling direction at an angle inclined to the contact interface. Full-coupled solutions are obtained through the Griffith energy balance between elastic and surface energies. The analysis shows that, for a special case, i.e., the direction of pulling normal to the contact interface, the full-coupled solution can be approximated by a non-oscillatory one, in which the critical pull-off force, pull-off contact half-width and adhesion strength can be expressed explicitly. For the other cases, i.e., the direction of pulling inclined to the contact interface, tangential tractions have significant effects on the pull-off process, it should be described by an exact full-coupled solution. The elastic anisotropy leads to an orientation-dependent pull-off force and adhesion strength. This study could not only supply an exact solution to the generalized JKR model of transversely isotropic materials, but also suggest a reversible adhesion sensor designed by transversely isotropic materials, such as PZT or fiber-reinforced materials with parallel fibers. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Upper Old Tampa Bay, a 17-square mile area of Old Tampa Bay, Florida, has been proposed for conversion to a fresh-water lake. The amount of runoff to the proposed lake and its chemical quality are both adequate to freshen and sustain a fresh-water lake in this part of the bay. During 1950-66 runoff to the proposed lake, including discharge from Lake Tarpon, would have averaged 134 mgd (million gallons per day) and would have displaced the volume of the proposed lake at normal pool stage (2.5 feet above mean sea level) about 1.7 times per year. Without discharge from Lake Tarpon, the volume of the proposed lake would have been displaced 1.2 times. If the lake level was initially at a normal pool stage during a critically dry year, such as 1956, the proposed lake would have declined 0.25 to 0.5 foot below the minimum design level, (1.5 feet above mean sea level). (44 page document)