921 resultados para Andrews


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work investigated the role of rpoS in the development of increased cell envelope resilience and enhanced pressure resistance in stationary phase cells of Escherichia coli. Loss of both colony-forming ability and membrane integrity, measured as uptake of propidium iodide (PI), occurred at lower pressures in E. coli BW3709 (rpoS) than in the parental strain (BW2952). The rpoS mutant also released much higher concentrations of protein under pressure than the parent. We propose that RpoS-regulated functions are responsible for the increase in membrane resilience as cells enter stationary phase and that this plays a major role in the development of pressure resistance. Strains from the Keio collection with mutations in two RpoS-regulated genes, cfa (cyclopropane fatty acyl phospholipid synthase) and osmB (outer membrane lipoprotein), were significantly more pressure-sensitive and took up more PI than the parent strains with cfa having the greatest effect. Mutations in the bolA morphogene and other RpoS-regulated lipoprotein genes (osmC, osmE, osmY and ybaY) had no effect on pressure resistance. The cytoplasmic membranes of the rpoS mutant failed to reseal after pressure treatment and strains with mutations in osmB and nlpI (new lipoprotein) were also somewhat impaired in the ability to reseal their membranes. The cfa mutant, though pressure-sensitive, was unaffected in membrane resealing implying that the initial transient permeabilization event is critical for loss of viability rather than the failure to reseal. The enhanced pressure sensitivity of polA, recA and xthA mutants suggested that DNA may be a target of oxidative stress in pressure-treated cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iron is both an essential nutrient for the growth of microorganisms, as well as a dangerous metal due to its capacity to generate reactive oxygen species (ROS) via the Fenton reaction. For these reasons, bacteria must tightly control the uptake and storage of iron in a manner that restricts the build-up of ROS. Therefore, it is not surprising to find that the control of iron homeostasis and responses to oxidative stress are coordinated. The mechanisms concerned with these processes, and the interactions involved, are the subject of this review.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ribonucleotide reductases supply cells with their deoxyribonucleotides. Three enzyme types are known, classes I, II and III. Class II enzymes are anaerobic whereas class I enzymes are aerobic, and so class I and II enzymes are often produced by the same organism under opposing oxygen regimes. Escherichia coli contains two types of class I enzyme (Ia and Ib) with the Fe-dependent Ia enzyme (NrdAB) performing the major role aerobically, leaving the purpose of the Ib enzyme (NrdEF) unclear. Several papers have recently focused on the class Ib enzymes showing that they are Mn (rather than Fe) dependent and suggesting that the E. coli NrdEF may function under redox-stress conditions. A paper published in this issue of Molecular Microbiology from James Imlay's group confirms that this unexplained NrdEF Ib enzyme is Mn-dependent, but shows that it does not substitute for NrdAB during redox stress. Instead, a role during iron restriction is demonstrated. Thus, the purpose of NrdEF (and possibly other class Ib enzymes) is to enhance growth under aerobic, low-iron conditions, and to functionally replace the Fe-dependent NrdAB when iron is unavailable. This finding reveals a new mechanism by which bacteria adjust to life under iron deprivation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterioferritin (BFR) from Escherichia coli is a member of the ferritin family of iron storage proteins and has the capacity to store very large amounts of iron as an Fe(3+) mineral inside its central cavity. The ability of organisms to tap into their cellular stores in times of iron deprivation requires that iron must be released from ferritin mineral stores. Currently, relatively little is known about the mechanisms by which this occurs, particularly in prokaryotic ferritins. Here we show that the bis-Met-coordinated heme groups of E. coli BFR, which are not found in other members of the ferritin family, play an important role in iron release from the BFR iron biomineral: kinetic iron release experiments revealed that the transfer of electrons into the internal cavity is the rate-limiting step of the release reaction and that the rate and extent of iron release were significantly increased in the presence of heme. Despite previous reports that a high affinity Fe(2+) chelator is required for iron release, we show that a large proportion of BFR core iron is released in the absence of such a chelator and further that chelators are not passive participants in iron release reactions. Finally, we show that the catalytic ferroxidase center, which is central to the mechanism of mineralization, is not involved in iron release; thus, core mineralization and release processes utilize distinct pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The Ferritins are part of the extensive â˜Ferritin-like superfamilyâ which have diverse functions but are linked by the presence of a common four-helical bundle domain. The role performed by Ferritins as the cellular repository of excess iron is unique. In many ways Ferritins act as tiny organelles in their ability to secrete iron away from the delicate machinery of the cell, and then to release it again in a controlled fashion avoiding toxicity. The Ferritins are ancient proteins, being common in all three domains of life. This ubiquity reflects the key contribution that Ferritins provide in achieving iron homeostasis. Scope of the review: This review compares the features of the different Ferritins and considers how they, and other members of the Ferritin-like superfamily, have evolved. It also considers relevant features of the eleven other known families within the Ferritin-like superfamily, particularly the highly diverse rubrerythrins. Major conclusions: The Ferritins have travelled a considerable evolutionary journey, being derived from far more simplistic rubrerythrin-like molecules which play roles in defence against toxic oxygen species. The forces of evolution have moulded such molecules into three distinct types of iron storing (or detoxifying) protein: the classical and universal 24-meric ferritins; the haem-containing 24-meric bacterioferritins of prokaryotes; and the prokaryotic 12-meric Dps proteins. These three Ferritin types are similar, but also possess unique properties that distinguish them and enable then to achieve their specific physiological purposes. General significance: A wide range of biological functions have evolved from a relatively simple structural unit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FtnA is the major iron-storage protein of Escherichia coli accounting for < or = 50% of total cellular iron. The FtnA gene (ftnA) is induced by iron in an Fe(2+)-Fur-dependent fashion. This effect is reportedly mediated by RyhB, the Fe(2+)-Fur-repressed, small, regulatory RNA. However, results presented here show that ftnA iron induction is independent of RyhB and instead involves direct interaction of Fe(2+)-Fur with an 'extended' Fur binding site (containing five tandem Fur boxes) located upstream (-83) of the ftnA promoter. In addition, H-NS acts as a direct repressor of ftnA transcription by binding at multiple sites (I-VI) within, and upstream of, the ftnA promoter. Fur directly competes with H-NS binding at upstream sites (II-IV) and consequently displaces H-NS from the ftnA promoter (sites V-VI) which in turn leads to derepression of ftnA transcription. It is proposed that H-NS binding within the ftnA promoter is facilitated by H-NS occupation of the upstream sites through H-NS oligomerization-induced DNA looping. Consequently, Fur displacement of H-NS from the upstream sites prevents cooperative H-NS binding at the downstream sites within the promoter, thus allowing access to RNA polymerase. This direct activation of ftnA transcription by Fe(2+)-Fur through H-NS antisilencing represents a new mechanism for iron-induced gene expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacteria commonly utilise a unique type of transporter, called Feo, to specifically acquire the ferrous (Fe2+) form of iron from their environment. Enterobacterial Feo systems are composed of three proteins: FeoA, a small, soluble SH3-domain protein probably located in the cytosol; FeoB, a large protein with a cytosolic N-terminal G-protein domain and a C-terminal integral inner-membrane domain containing two 'Gate' motifs which likely functions as the Fe2+ permease; and FeoC, a small protein apparently functioning as an [Fe-S]-dependent transcriptional repressor. We provide a review of the current literature combined with a bioinformatic assessment of bacterial Feo systems showing how they exhibit common features, as well as differences in organisation and composition which probably reflect variations in mechanisms employed and function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colon cancer is a leading and expanding cause of death worldwide. A major contributory factor to this disease is diet composition; some components are beneficial (e.g. dietary fibre) whilst others are detrimental (e.g. alcohol). Garlic oil is a prominent dietary constituent that prevents the development of colorectal cancer. This effect is believed to be mainly due to diallyl disulphide (DADS), which selectively induces redox stress in cancerous (rather than normal) cells which leads to apoptotic cell death. However, the detailed mechanism by which DADS causes apoptosis remains unclear. We show that DADS-treatment of colonic adenocarcinoma cells (HT-29) initiates a cascade of molecular events characteristic of apoptosis. These include a decrease in cellular proliferation, translocation of phosphatidylserine to the plasma-membrane outer-layer, activation of caspase-3, genomic-DNA fragmentation and G2/M phase cell-cycle arrest. Short-chain fatty acids (SCFAs), particularly butyrate (abundantly produced in the gut by bacterial fermentation of dietary polysaccharides), enhance colonic cell integrity but, in contrast, inhibit colonic-cancer cell growth. Combining DADS with butyrate augmented the effect of butyrate on HT-29 cells. These results suggest that the anti-cancerous properties of DADS afford greater benefit when supplied with other favourable dietary factors (SCFA/polysaccharides) that likewise reduce colonic tumour development.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador: