845 resultados para Anaerobic Metabolism
Resumo:
This study evaluated the effects of bFGF and TGF-beta, individually and combined, on cell proliferation and collagen metabolism. Primary human periodontal ligament cells were stimulated with two concentrations (I and 10 ng/ml) of each growth factor, both individually and combined. Proliferation was determined by a commercial biochemical assay. Real time RT-PCR determined gene expression of NMP-1 and -2, collagen types I and III, TIMP-1, -2 and -3. Autocrine effects on synthesis of bFGF and TGF-beta were evaluated by ELISA. Only TGF-beta, either isolated or associated with bFGF, significantly increased cell proliferation. TGF-beta had anabolic effects, increasing expression of type I and III collagen as well as of TIMPs, whereas bFGF had opposite effects. When bFGF and TGF-beta were associated, the anabolic effects prevailed. Synthesis of TGF-beta was induced only by the association of lower concentrations of the growth factors, whereas there was a dose-dependent production of bFGF. It is concluded that bFGF had a predominantly catabolic effect, and TGF-beta exerted an anabolic effect on hPDL cells. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The equilibrium point between blood lactate production and removal (La-min(-)) and the individual anaerobic threshold (IAT) protocols have been used to evaluate exercise. During progressive exercise, blood lactate [La-](b), catecholamine and cortisol concentrations, show exponential increases at upper anaerobic threshold intensities. Since these hormones enhance blood glucose concentrations [Glc](b), this study investigated the [Glc] and [La-](b) responses during incremental tests and the possibility of considering the individual glucose threshold (IGT) and glucose minimum;(Glc(min)) in addition to IAT and La-min(-) in evaluating exercise. A group of 15 male endurance runners ran in four tests on the track 3000 m run (v(3km)); IAT and IGT- 8 x 800 m runs at velocities between 84% and 102% of v(3km); La-min(-) and Glc(min) - after lactic acidosis induced by a 500-m sprint, the subjects ran 8 x 800 m at intensities between 87% and 97% of v(3km); endurance test (ET)- 30 min at the velocity of IAT. Capillary blood (25 mu l) was collected for [La-](b) and [Glc](b) measurements. The TAT and IGT were determined by [La-](b) and [Glc](b) kinetics during the second test. The La-min(-) and Glc(min) were determined considering the lowest [La-] and [Glc](b) during the third test. No differences were observed (P < 0.05) and high correlations were obtained between the velocities at IAT [283 (SD 19) and IGT 281 (SD 21)m. min(-1); r = 0.096; P < 0.001] and between La,, [285 (SD 21)] and Glc(min) [287 (SD 20) m. min(-1) = 0.77; P < 0.05]. During ET, the [La-](b) reached 5.0 (SD 1.1) and 5.3 (SD 1.0) mmol 1(-1) at 20 and 30 min, respectively (P > 0.05). We concluded that for these subjects it was possible to evaluate the aerobic capacity by IGT and Glc(min), as well as by IAT and La-min(-).
Resumo:
5-Aminolevulinic acid (ALA), a heme precursor that accumulates in acute intermittent porphyria patients and lead-exposed individuals, has previously been shown to autoxidize with generation of reactive oxygen species and to cause in vitro oxidative damage to rat liver mitochondria. We now demonstrate that chronically ALA-treated rats (40 mg/kg body wt every 2 days for 15 days) exhibit decreased mitochondrial enzymatic activities (superoxide dismutase, citrate synthase) in liver and soleus (type I, red) and gastrocnemius (type IIb, white) muscle fibers. Previous adaptation of rats to endurance exercise, indicated by augmented (cytosolic) CuZn-superoxide dismutase (SOD) and (mitochondrial) Mn-SOD activities in several organs, does not protect the animals against liver and soleus mitochondrial damage promoted by intraperitoneal injections of ALA. This is suggested by loss of citrate synthase and Mn-SOD activities and elevation of serum lactate levels, concomitant to decreased glycogen content in soleus and the red portion of gastrocnemius (type IIa) fibers of both sedentary and swimming-trained ALA-treated rats. In parallel, the type IIb gastrocnemius fibers, which are known to obtain energy mainly by glycolysis, do not undergo these biochemical changes. Consistently, ALA-treated rats under swimming training reach fatigue significantly earlier than the control group. These results indicate that ALA may be an important prooxidant in vivo.
Resumo:
Experiments were performed to determine the mechanism by which recombinant bovine interferon-alpha(I)1 (rbIFN-alpha) causes an acute reduction in plasma concentrations of progesterone. In experiment 1, administration of a prostaglandin synthesis inhibitor blocked rbIFN-alpha-induced hyperthermia but did not prevent the decline in plasma concentrations of progesterone. The decline in progesterone concentrations caused by rbIFN-alpha was, therefore, not a direct consequence of the associated hyperthermia or of pathways mediated through prostaglandin synthesis. It is also unlikely that rbIFN-alpha acts to increase the clearance of progesterone since injection of rbIFN-alpha did not decrease plasma concentrations of progesterone in ovariectomized cows given an intravaginal implant of progesterone (experiment 2). In experiment 3, rbIFN-alpha did not affect basal and LH-induced release of progesterone from cultured luteal slices, indicating that rbIFN-alpha is unlikely to affect luteal function directly. Injection of rbIFN-alpha did, however, cause a decrease in plasma concentrations of LH in ovariectomized cows (experiment 4) that coincided temporally with the decrease in progesterone concentrations seen in cows having a functional corpus luteum. The present results strongly suggest that rbIFN-alpha acts to reduce secretion of progesterone by interfering with pituitary support for luteal synthesis of progesterone. The finding that rbIFN-alpha can inhibit LH secretion implies that interferon-alpha molecules should be considered among the cytokines that can regulate hypothalamic or pituitary function.
Resumo:
Three pens of male broiler chicks were raised under standard conditions and fed from 7 to 42 days of age three isocaloric diets each with 15.8; 19.6 and 19.5% of CP; and 51, 51, and 44% of CHO; and 6.5; 3.0 and 7.7% of fat, and designated as the low protein (LowCP), low lipid (LowL) and low carbohydrate (LowCHO) diets, respectively. Body weights and feed intake were monitored weekly and blood samples were collected at the same time for posterior analysis of hormone and metabolite content. Chickens fed the LowCP diet were characterized by a reduced body weight gain and feed intake and poorer feed conversion efficiency compared to those fed the LowL and LowCHO diets, which were very similar in this respect. Plasma corticosterone and glucose levels and creatine kinase activity were not significantly changed by diet composition. LowCP chickens were characterised by the lowest plasma T-4 and uric acid levels (indicative for reduced protein breakdown and lower protein ingestion) but highest plasma triglyceride levels (congruent with their higher fat deposition) compared to the LowL and LowCHO chickens. LowL chickens had on average higher plasma T-3 and free fatty acid levels compared to the LowCP and LowCHO chickens.In conclusion, a limited substitution of carbohydrate for fat in iso-nitrogenous, iso-energetic diets has no pronounced effects on plasma hormone and metabolite levels, except for the elevation in T-3 (may enhance glucose uptake) and free fatty acid levels in the plasma of the chickens fed the LowL diet. The protein content of the diet has a greater impact on zootechnical performance, and underlying endocrine regulation of the intermediary metabolism compared to the dietary lipid and CHO fraction. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We investigated the combined effect of meal size and temperature on the aerobic metabolism and energetics of digestion in Boa constrictor amarali. Oxygen uptake rates ((V) over dot o(2)) and the. duration of the digestion were determined in snakes fed with meals equaling to 5%, 10%, 20%, and 40% of the snake's body mass at 25degrees and 30 degreesC. The maximum (V) over dot o(2) values attained during digestion were greater at 30 degreesC than at 25 degreesC. Both maximal (V) over dot (o2) values and the duration of the specific dynamic action. (SDA) were attained sooner at 30 degreesC than at 25 degreesC. Therefore, the temperature effect on digestion in Boa is characterized by the shortening of the SDA duration at the expense of increased. Energy allocated to SDA was not affected by meal size but. was greater at 25 degreesC compared to 30 degreesC. This indicates that a postprandial thermophilic response can be advantageous not only by decreasing the duration of digestion but also by improving digestive efficiency. Maximal (V) over dot o(2) and SDA duration. increased with meal size at both temperatures.
Resumo:
The effects of anaerobic digestion and initial pH on the bioleaching of metals from sewage sludge were investigated in shake flask experiments. A strain of Acidithiobacillus thiooxidans was employed in the assays using secondary and anaerobic sludges, which resulted in similar solubilization yields of the metals chromium, copper, lead, nickel, and zinc for both the sludges investigated. The effect of initial pH (7.0 and 4.0) on metal bioleaching was assayed by using the anaerobic sludge inoculated with indigenous sulfur-oxidizing thiobacilli. Although the time required to reach the end of the experiment (final pH close to 1.0) was shortened at initial pH of 4.0, final metal solubilization was not significantly different for both initial pH values, resulting in higher solubilization yields for copper, nickel, and zinc (higher than 80%). Chromium and lead presented solubilization yields close to 50%. The results obtained in this work showed that the metal bioleaching process can be applied to sewage sludge regardless of the type of sludge and without the requirement of pH adjustment.