940 resultados para An eddy-resolving ocean model simulation
Resumo:
We investigated the effect of elevated partial pressure of CO2 (pCO2) on the photosynthesis and growth of four phylotypes (ITS2 types A1, A13, A2, and B1) from the genus Symbiodinium, a diverse dinoflagellate group that is important, both free-living and in symbiosis, for the viability of cnidarians and is thus a potentially important model dinoflagellate group. The response of Symbiodinium to an elevated pCO2 was phylotype-specific. Phylotypes A1 and B1 were largely unaffected by a doubling in pCO2 in contrast, the growth rate of A13 and the photosynthetic capacity of A2 both increased by ~ 60%. In no case was there an effect of ocean acidification (OA) upon respiration (dark- or light-dependent) for any of the phylotypes examined. Our observations suggest that OA might preferentially select among free-living populations of Symbiodinium, with implications for future symbioses that rely on algal acquisition from the environment (i.e., horizontal transmission). Furthermore, the carbon environment within the host could differentially affect the physiology of different Symbiodinium phylotypes. The range of responses we observed also highlights that the choice of species is an important consideration in OA research and that further investigation across phylogenetic diversity, for both the direction of effect and the underlying mechanism(s) involved, is warranted.
Resumo:
An in situ iron enrichment experiment was carried out in the Southern Ocean Polar Frontal Zone and fertilized a patch of water within an eddy of the Antarctic Circumpolar Current (EisenEx, Nov. 2000). During the experiment, a physical speciation technique was used for iron analysis in order to understand the changes in iron distribution and size-fractionations, including soluble Fe (<200 kDa), colloidal Fe (200 kDa-0.2 µm) and labile particle Fe (>0.2 µm), throughout the development of the phytoplankton bloom. Prior to the first infusion of iron, dissolved (<0.2 µm) iron concentrations in the ambient surface seawater were extremely low (0.06±0.015 nM) with colloidal iron being a minor fraction. For the iron addition, an acidified FeSO4 solution was released three times over a 23-day period to the eddy. High levels of dissolved iron concentrations (2.0±1.1 nM) were measured in the surface water until 4 days after the first iron infusion. After every iron infusion, when high iron concentrations were observed before storm events, there was a significant correlation between colloidal and dissolved iron concentrations ([Colloidal Fe]=0.7627[Dissolved Fe]+0.0519, R2=0.9346). These results indicate that a roughly constant proportion of colloidal vs. dissolved iron was observed after iron infusion (~76%). Storm events caused a significant decrease in iron concentrations (<0.61 nM in dissolved iron) and changed the proportions of the three iron size-fractions (soluble, colloidal and labile particle). The changes in each iron size-fraction indicate that colloidal iron was eliminated from surface mixed layer more easily than particulate and soluble fractions. Therefore, particle and soluble iron efficiently remain in the mixed layer, probably due to the presence of suspended particles and naturally dissolved organic ligands. Our data suggest that iron removal through colloidal aggregation during phytoplankton bloom should be considered in the oceanic iron cycle.
Resumo:
Quantile regression (QR) was first introduced by Roger Koenker and Gilbert Bassett in 1978. It is robust to outliers which affect least squares estimator on a large scale in linear regression. Instead of modeling mean of the response, QR provides an alternative way to model the relationship between quantiles of the response and covariates. Therefore, QR can be widely used to solve problems in econometrics, environmental sciences and health sciences. Sample size is an important factor in the planning stage of experimental design and observational studies. In ordinary linear regression, sample size may be determined based on either precision analysis or power analysis with closed form formulas. There are also methods that calculate sample size based on precision analysis for QR like C.Jennen-Steinmetz and S.Wellek (2005). A method to estimate sample size for QR based on power analysis was proposed by Shao and Wang (2009). In this paper, a new method is proposed to calculate sample size based on power analysis under hypothesis test of covariate effects. Even though error distribution assumption is not necessary for QR analysis itself, researchers have to make assumptions of error distribution and covariate structure in the planning stage of a study to obtain a reasonable estimate of sample size. In this project, both parametric and nonparametric methods are provided to estimate error distribution. Since the method proposed can be implemented in R, user is able to choose either parametric distribution or nonparametric kernel density estimation for error distribution. User also needs to specify the covariate structure and effect size to carry out sample size and power calculation. The performance of the method proposed is further evaluated using numerical simulation. The results suggest that the sample sizes obtained from our method provide empirical powers that are closed to the nominal power level, for example, 80%.
Resumo:
The generalized KP (GKP) equations with an arbitrary nonlinear term model and characterize many nonlinear physical phenomena. The symmetries of GKP equation with an arbitrary nonlinear term are obtained. The condition that must satisfy for existence the symmetries group of GKP is derived and also the obtained symmetries are classified according to different forms of the nonlinear term. The resulting similarity reductions are studied by performing the bifurcation and the phase portrait of GKP and also the corresponding solitary wave solutions of GKP
equation are constructed.
Resumo:
The internal combustion (IC) engines exploits only about 30% of the chemical energy ejected through combustion, whereas the remaining part is rejected by means of cooling system and exhausted gas. Nowadays, a major global concern is finding sustainable solutions for better fuel economy which in turn results in a decrease of carbon dioxide (CO2) emissions. The Waste Heat Recovery (WHR) is one of the most promising techniques to increase the overall efficiency of a vehicle system, allowing the recovery of the heat rejected by the exhaust and cooling systems. In this context, Organic Rankine Cycles (ORCs) are widely recognized as a potential technology to exploit the heat rejected by engines to produce electricity. The aim of the present paper is to investigate a WHR system, designed to collect both coolant and exhausted gas heats, coupled with an ORC cycle for vehicle applications. In particular, a coolant heat exchanger (CLT) allows the heat exchange between the water coolant and the ORC working fluid, whereas the exhausted gas heat is recovered by using a secondary circuit with diathermic oil. By using an in-house numerical model, a wide range of working conditions and ORC design parameters are investigated. In particular, the analyses are focused on the regenerator location inside the ORC circuits. Five organic fluids, working in both subcritical and supercritical conditions, have been selected in order to detect the most suitable configuration in terms of energy and exergy efficiencies.
Resumo:
The aim of this report is to give an overview of the results of Work Package 5 “Engineering Tools”. In this workpackage numerical tools have been developed for all relevant CHCP systems in the PolySMART demonstration projects (WP3). First, existing simulation platforms have been described and specific characteristics have been identified. Several different simulation platforms are in principle appropriate for the needs in the PolySMART project. The result is an evaluation of available simulation and engineering tools for CHCP simulation, and an agreement upon a common simulation environment within the PolySMART project. Next, numerical models for components in the demonstration projects have been developed. These models are available to the PolySMART consortium. Of all modeled components an overall and detailed working principle is formulated, including a parameter list and (in some cases) a control strategy. Finally, for four CHCP systems in the PolySMART project, a system simulation model has been developed. For each system simulation a separate deliverable is available (D5.5b to D5.5e) These deliverables replace deliverable 5.4 ‘system models’. The numerical models for components and systems developed in the Polysmart project form a valuable basis for the component development and optimisation and for the system optimisation, both within and outside the project. Developers and researchers interested in more information about specific models can refer to the institutes and contact persons involved in the model development.
Resumo:
Hybrid simulation is a technique that combines experimental and numerical testing and has been used for the last decades in the fields of aerospace, civil and mechanical engineering. During this time, most of the research has focused on developing algorithms and the necessary technology, including but not limited to, error minimisation techniques, phase lag compensation and faster hydraulic cylinders. However, one of the main shortcomings in hybrid simulation that has pre- vented its widespread use is the size of the numerical models and the effect that higher frequencies may have on the stability and accuracy of the simulation. The first chapter in this document provides an overview of the hybrid simulation method and the different hybrid simulation schemes, and the corresponding time integration algorithms, that are more commonly used in this field. The scope of this thesis is presented in more detail in chapter 2: a substructure algorithm, the Substep Force Feedback (Subfeed), is adapted in order to fulfil the necessary requirements in terms of speed. The effects of more complex models on the Subfeed are also studied in detail, and the improvements made are validated experimentally. Chapters 3 and 4 detail the methodologies that have been used in order to accomplish the objectives mentioned in the previous lines, listing the different cases of study and detailing the hardware and software used to experimentally validate them. The third chapter contains a brief introduction to a project, the DFG Subshake, whose data have been used as a starting point for the developments that are shown later in this thesis. The results obtained are presented in chapters 5 and 6, with the first of them focusing on purely numerical simulations while the second of them is more oriented towards a more practical application including experimental real-time hybrid simulation tests with large numerical models. Following the discussion of the developments in this thesis is a list of hardware and software requirements that have to be met in order to apply the methods described in this document, and they can be found in chapter 7. The last chapter, chapter 8, of this thesis focuses on conclusions and achievements extracted from the results, namely: the adaptation of the hybrid simulation algorithm Subfeed to be used in conjunction with large numerical models, the study of the effect of high frequencies on the substructure algorithm and experimental real-time hybrid simulation tests with vibrating subsystems using large numerical models and shake tables. A brief discussion of possible future research activities can be found in the concluding chapter.
Resumo:
This work represents an original contribution to the methodology for ecosystem models' development as well as the rst attempt of an end-to-end (E2E) model of the Northern Humboldt Current Ecosystem (NHCE). The main purpose of the developed model is to build a tool for ecosystem-based management and decision making, reason why the credibility of the model is essential, and this can be assessed through confrontation to data. Additionally, the NHCE exhibits a high climatic and oceanographic variability at several scales, the major source of interannual variability being the interruption of the upwelling seasonality by the El Niño Southern Oscillation, which has direct e ects on larval survival and sh recruitment success. Fishing activity can also be highly variable, depending on the abundance and accessibility of the main shery resources. This context brings the two main methodological questions addressed in this thesis, through the development of an end-to-end model coupling the high trophic level model OSMOSE to the hydrodynamics and biogeochemical model ROMS-PISCES: i) how to calibrate ecosystem models using time series data and ii) how to incorporate the impact of the interannual variability of the environment and shing. First, this thesis highlights some issues related to the confrontation of complex ecosystem models to data and proposes a methodology for a sequential multi-phases calibration of ecosystem models. We propose two criteria to classify the parameters of a model: the model dependency and the time variability of the parameters. Then, these criteria along with the availability of approximate initial estimates are used as decision rules to determine which parameters need to be estimated, and their precedence order in the sequential calibration process. Additionally, a new Evolutionary Algorithm designed for the calibration of stochastic models (e.g Individual Based Model) and optimized for maximum likelihood estimation has been developed and applied to the calibration of the OSMOSE model to time series data. The environmental variability is explicit in the model: the ROMS-PISCES model forces the OSMOSE model and drives potential bottom-up e ects up the foodweb through plankton and sh trophic interactions, as well as through changes in the spatial distribution of sh. The latter e ect was taken into account using presence/ absence species distribution models which are traditionally assessed through a confusion matrix and the statistical metrics associated to it. However, when considering the prediction of the habitat against time, the variability in the spatial distribution of the habitat can be summarized and validated using the emerging patterns from the shape of the spatial distributions. We modeled the potential habitat of the main species of the Humboldt Current Ecosystem using several sources of information ( sheries, scienti c surveys and satellite monitoring of vessels) jointly with environmental data from remote sensing and in situ observations, from 1992 to 2008. The potential habitat was predicted over the study period with monthly resolution, and the model was validated using quantitative and qualitative information of the system using a pattern oriented approach. The nal ROMS-PISCES-OSMOSE E2E ecosystem model for the NHCE was calibrated using our evolutionary algorithm and a likelihood approach to t monthly time series data of landings, abundance indices and catch at length distributions from 1992 to 2008. To conclude, some potential applications of the model for shery management are presented and their limitations and perspectives discussed.
Resumo:
The recent years have witnessed increased development of small, autonomous fixed-wing Unmanned Aerial Vehicles (UAVs). In order to unlock widespread applicability of these platforms, they need to be capable of operating under a variety of environmental conditions. Due to their small size, low weight, and low speeds, they require the capability of coping with wind speeds that are approaching or even faster than the nominal airspeed. In this thesis, a nonlinear-geometric guidance strategy is presented, addressing this problem. More broadly, a methodology is proposed for the high-level control of non-holonomic unicycle-like vehicles in the presence of strong flowfields (e.g. winds, underwater currents) which may outreach the maximum vehicle speed. The proposed strategy guarantees convergence to a safe and stable vehicle configuration with respect to the flowfield, while preserving some tracking performance with respect to the target path. As an alternative approach, an algorithm based on Model Predictive Control (MPC) is developed, and a comparison between advantages and disadvantages of both approaches is drawn. Evaluations in simulations and a challenging real-world flight experiment in very windy conditions confirm the feasibility of the proposed guidance approach.
Resumo:
Ce travail présente une modélisation rapide d’ordre élévé capable de modéliser une configuration rotorique en cage complète ou en grille, de reproduire les courants de barre et tenir compte des harmoniques d’espace. Le modèle utilise une approche combinée d’éléments finis avec les circuits-couplés. En effet, le calcul des inductances est réalisé avec les éléments finis, ce qui confère une précision avancée au modèle. Cette méthode offre un gain important en temps de calcul sur les éléments finis pour des simulations transitoires. Deux outils de simulation sont développés, un dans le domaine du temps pour des résolutions dynamiques et un autre dans le domaine des phaseurs dont une application sur des tests de réponse en fréquence à l’arrêt (SSFR) est également présentée. La méthode de construction du modèle est décrite en détail de même que la procédure de modélisation de la cage du rotor. Le modèle est validé par l’étude de machines synchrones: une machine de laboratoire de 5.4 KVA et un grand alternateur de 109 MVA dont les mesures expérimentales sont comparées aux résultats de simulation du modèle pour des essais tels que des tests à vide, des courts-circuits triphasés, biphasés et un test en charge.
Resumo:
Le processus de planification forestière hiérarchique présentement en place sur les terres publiques risque d’échouer à deux niveaux. Au niveau supérieur, le processus en place ne fournit pas une preuve suffisante de la durabilité du niveau de récolte actuel. À un niveau inférieur, le processus en place n’appuie pas la réalisation du plein potentiel de création de valeur de la ressource forestière, contraignant parfois inutilement la planification à court terme de la récolte. Ces échecs sont attribuables à certaines hypothèses implicites au modèle d’optimisation de la possibilité forestière, ce qui pourrait expliquer pourquoi ce problème n’est pas bien documenté dans la littérature. Nous utilisons la théorie de l’agence pour modéliser le processus de planification forestière hiérarchique sur les terres publiques. Nous développons un cadre de simulation itératif en deux étapes pour estimer l’effet à long terme de l’interaction entre l’État et le consommateur de fibre, nous permettant ainsi d’établir certaines conditions pouvant mener à des ruptures de stock. Nous proposons ensuite une formulation améliorée du modèle d’optimisation de la possibilité forestière. La formulation classique du modèle d’optimisation de la possibilité forestière (c.-à-d., maximisation du rendement soutenu en fibre) ne considère pas que le consommateur de fibre industriel souhaite maximiser son profit, mais suppose plutôt la consommation totale de l’offre de fibre à chaque période, peu importe le potentiel de création de valeur de celle-ci. Nous étendons la formulation classique du modèle d’optimisation de la possibilité forestière afin de permettre l’anticipation du comportement du consommateur de fibre, augmentant ainsi la probabilité que l’offre de fibre soit entièrement consommée, rétablissant ainsi la validité de l’hypothèse de consommation totale de l’offre de fibre implicite au modèle d’optimisation. Nous modélisons la relation principal-agent entre le gouvernement et l’industrie à l’aide d’une formulation biniveau du modèle optimisation, où le niveau supérieur représente le processus de détermination de la possibilité forestière (responsabilité du gouvernement), et le niveau inférieur représente le processus de consommation de la fibre (responsabilité de l’industrie). Nous montrons que la formulation biniveau peux atténuer le risque de ruptures de stock, améliorant ainsi la crédibilité du processus de planification forestière hiérarchique. Ensemble, le modèle biniveau d’optimisation de la possibilité forestière et la méthodologie que nous avons développée pour résoudre celui-ci à l’optimalité, représentent une alternative aux méthodes actuellement utilisées. Notre modèle biniveau et le cadre de simulation itérative représentent un pas vers l’avant en matière de technologie de planification forestière axée sur la création de valeur. L’intégration explicite d’objectifs et de contraintes industrielles au processus de planification forestière, dès la détermination de la possibilité forestière, devrait favoriser une collaboration accrue entre les instances gouvernementales et industrielles, permettant ainsi d’exploiter le plein potentiel de création de valeur de la ressource forestière.
Resumo:
The purpose of the study was to explore how a public, IT services transferor, organization, comprised of autonomous entities, can effectively develop and organize its data center cost recovery mechanisms in a fair manner. The lack of a well-defined model for charges and a cost recovery scheme could cause various problems. For example one entity may be subsidizing the costs of another entity(s). Transfer pricing is in the best interest of each autonomous entity in a CCA. While transfer pricing plays a pivotal role in the price settings of services and intangible assets, TCE focuses on the arrangement at the boundary between entities. TCE is concerned with the costs, autonomy, and cooperation issues of an organization. The theory is concern with the factors that influence intra-firm transaction costs and attempting to manifest the problems involved in the determination of the charges or prices of the transactions. This study was carried out, as a single case study, in a public organization. The organization intended to transfer the IT services of its own affiliated public entities and was in the process of establishing a municipal-joint data center. Nine semi-structured interviews, including two pilot interviews, were conducted with the experts and managers of the case company and its affiliating entities. The purpose of these interviews was to explore the charging and pricing issues of the intra-firm transactions. In order to process and summarize the findings, this study employed qualitative techniques with the multiple methods of data collection. The study, by reviewing the TCE theory and a sample of transfer pricing literature, created an IT services pricing framework as a conceptual tool for illustrating the structure of transferring costs. Antecedents and consequences of the transfer price based on TCE were developed. An explanatory fair charging model was eventually developed and suggested. The findings of the study suggested that the Chargeback system was inappropriate scheme for an organization with affiliated autonomous entities. The main contribution of the study was the application of TP methodologies in the public sphere with no tax issues consideration.
Resumo:
Adult anchovies in the Bay of Biscay perform north to south migration from late winter to early summer for spawning. However, what triggers and drives the geographic shift of the population remains unclear and poorly understood. An individual-based fish model has been implemented to explore the potential mechanisms that control anchovy's movement routes toward its spawning habitats. To achieve this goal, two fish movement behaviors – gradient detection through restricted area search and kinesis – simulated fish response to its dynamic environment. A bioenergetics model was used to represent individual growth and reproduction along the fish trajectory. The environmental forcing (food, temperature) of the model was provided by a coupled physical–biogeochemical model. We followed a hypothesis-testing strategy to actualize a series of simulations using different cues and computational assumptions. The gradient detection behavior was found as the most suitable mechanism to recreate the observed shift of anchovy distribution under the combined effect of sea-surface temperature and zooplankton. In addition, our results suggested that southward movement occurred more actively from early April to middle May following favorably the spatio-temporal evolution of zooplankton and temperature. In terms of fish bioenergetics, individuals who ended up in the southern part of the bay presented better condition based on energy content, proposing the resulting energy gain as an ecological explanation for this migration. The kinesis approach resulted in a moderate performance, producing distribution pattern with the highest spread. Finally, model performance was not significantly affected by changes on the starting date, initial fish distribution and number of particles used in the simulations, whereas it was drastically influenced by the adopted cues.
Resumo:
We study spatially localized states of a spiking neuronal network populated by a pulse coupled phase oscillator known as the lighthouse model. We show that in the limit of slow synaptic interactions in the continuum limit the dynamics reduce to those of the standard Amari model. For non-slow synaptic connections we are able to go beyond the standard firing rate analysis of localized solutions allowing us to explicitly construct a family of co-existing one-bump solutions, and then track bump width and firing pattern as a function of system parameters. We also present an analysis of the model on a discrete lattice. We show that multiple width bump states can co-exist and uncover a mechanism for bump wandering linked to the speed of synaptic processing. Moreover, beyond a wandering transition point we show that the bump undergoes an effective random walk with a diffusion coefficient that scales exponentially with the rate of synaptic processing and linearly with the lattice spacing.
Resumo:
The occurrence frequency of failure events serve as critical indexes representing the safety status of dam-reservoir systems. Although overtopping is the most common failure mode with significant consequences, this type of event, in most cases, has a small probability. Estimation of such rare event risks for dam-reservoir systems with crude Monte Carlo (CMC) simulation techniques requires a prohibitively large number of trials, where significant computational resources are required to reach the satisfied estimation results. Otherwise, estimation of the disturbances would not be accurate enough. In order to reduce the computation expenses and improve the risk estimation efficiency, an importance sampling (IS) based simulation approach is proposed in this dissertation to address the overtopping risks of dam-reservoir systems. Deliverables of this study mainly include the following five aspects: 1) the reservoir inflow hydrograph model; 2) the dam-reservoir system operation model; 3) the CMC simulation framework; 4) the IS-based Monte Carlo (ISMC) simulation framework; and 5) the overtopping risk estimation comparison of both CMC and ISMC simulation. In a broader sense, this study meets the following three expectations: 1) to address the natural stochastic characteristics of the dam-reservoir system, such as the reservoir inflow rate; 2) to build up the fundamental CMC and ISMC simulation frameworks of the dam-reservoir system in order to estimate the overtopping risks; and 3) to compare the simulation results and the computational performance in order to demonstrate the ISMC simulation advantages. The estimation results of overtopping probability could be used to guide the future dam safety investigations and studies, and to supplement the conventional analyses in decision making on the dam-reservoir system improvements. At the same time, the proposed methodology of ISMC simulation is reasonably robust and proved to improve the overtopping risk estimation. The more accurate estimation, the smaller variance, and the reduced CPU time, expand the application of Monte Carlo (MC) technique on evaluating rare event risks for infrastructures.