949 resultados para Amplitude modulation detectors
Resumo:
A vibration energy harvester designed to access parametric resonance can potentially outperform the conventional direct resonant approach in terms of power output achievable given the same drive acceleration. Although linear damping does not limit the resonant growth of parametric resonance, a damping dependent initiation threshold amplitude exists and limits its onset. Design approaches have been explored in this paper to passively overcome this limitation in order to practically realize and exploit the potential advantages. Two distinct design routes have been explored, namely an intrinsically lower threshold through a pendulum-lever configuration and amplification of base excitation fed into the parametric resonator through a cantilever-initial-spring configuration. Experimental results of the parametric resonant harvesters with these additional enabling designs demonstrated an initiation threshold up to an order of magnitude lower than otherwise, while attaining a much higher power peak than direct resonance. © 2014 IOP Publishing Ltd.
Resumo:
Variations in optical spectrum and modulation band-width of a modulated Fabry-Perot (FP) semiconductor laser subject to the external light injection from another FP Laser is investigated in this paper. Optimal wavelength matching conditions for two FP lasers are discussed. A series of experiments show that two FP lasers should have a central wavelength overlapping and a mode spacing difference of several gigahertz. Under these conditions both the magnitude and phase frequency responses can be improved significantly.
Resumo:
In this letter, the power spectrum of a cooled distributed feedback laser module is measured using the self-heterodyne technique. Periodical oscillation peaks have been observed in the measurement. Further investigation shows that the additional modulation signal is coupled from the thermal electric cooler (TEC) controller to the laser driver, and then applied to the laser diode. The additional modulation can be eliminated by properly isolating the laser driving source from the TEC controller.
Resumo:
The interface dipole and its role in the effective work function (EWF) modulation by Al incorporation are investigated. Our study shows that the interface dipole located at the high-k/SiO2 interface causes an electrostatic potential difference across the metal/high-k interface, which significantly shifts the band alignment between the metal and high-k, consequently modulating the EWF. The electrochemical potential equalization and electrostatic potential methods are used to evaluate the interface dipole and its contribution. The calculated EWF modulation agrees with experimental data and can provide insight to the control of EWF in future pMOS technology.
Resumo:
The emission wavelength of a GaInNAs quantum well (QW) laser was adjusted to 1310 nm, the zero dispersion wavelength of optical fibre, by an appropriate choice of QW composition and thickness and N concentration in the barriers. A triple QW design was employed to enable the use of a short cavity with a small photon lifetime while having sufficient differential gain for a large modulation bandwidth. High speed, ridge waveguide lasers fabricated from high quality material grown by molecular beam epitaxy exhibited a damped modulation response with a bandwidth of 13 GHz.
Resumo:
We present the fabrication of 1.3 mu m waveband p-doped InAs quantum dot (QD) vertical cavity surface emitting lasers (VCSELs) with an extremely simple process. The continuous-wave saturated output power of 1.1 mW with a lasing wavelength of 1280 nm is obtained at room temperature. The high-speed modulation characteristics of p-doped QD VCSELs of two different oxide aperture sizes are investigated and compared. The maximum 3 dB modulation bandwidth of 2.5 GHz can be achieved at a bias current of 7 mA for a p-doped QD VCSEL with an oxide aperture size of 10 mu m in the small signal frequency response measurements. The crucial factors for the 3 dB bandwidth limitation are discussed according to the parameters' extraction from frequency response.
Resumo:
We propose a silicon ring-based optical modulation method to perform chirp-free optical modulations. In this scheme, we locate the light to be modulated at the resonance of the ring and tune the coupling coefficient between the ring and the straight waveguide by using a push-pull coupling structure. The chirp-free phase modulation can be achieved by varying the coupling coefficient in a large range, which can modify the coupling condition of the ring such that the input light experiences an abrupt phase shift of pi at the output. If the coupling coefficient is adjusted in a small range such that the coupling condition of the ring is kept unchanged, only the intensity of the light will be modulated. This leads to chirp-free intensity modulation. Our simulations performed at 10 Gbits/s confirm the feasibility of the proposal. (C) 2009 Optical Society of America
Resumo:
Anode floating voltage is predicted and investigated for silicon drift detectors (SDDs) with an active area of 5 mm(2) fabricated by a double-side parallel technology. It is demonstrated that the anode floating voltage increases with the increasing inner ring voltage, and is almost unchanged with the external ring voltage. The anode floating voltage will not be affected by the back electrode biased voltage until it reaches the full-depleted voltage (-50 V) of the SDD. Theoretical analysis and experimental results show that the anode floating voltage is equal to the sum of the inner ring voltage and the built-in potential between the p(+) inner ring and the n(+) anode. A fast checking method before detector encapsulation is proposed by employing the anode floating voltage along with checking the leakage current, potential distribution and drift properties.
Resumo:
Qubit measurement by mesoscopic charge detectors has received great interest in the community of mesoscopic transport and solid-state quantum computation, and some controversial issues still remain unresolved. In this work, we revisit the continuous weak measurement of a solid-state qubit by single electron transistors (SETs) in nonlinear-response regime. For two SET models typically used in the literature, we find that the signal-to-noise ratio can violate the universal upper bound "4," which is imposed quantum mechanically on linear-response detectors. This different result can be understood by means of the cross correlation of the detector currents by viewing the two junctions of the single SET as two detectors. Possible limitation of the potential-scattering approach to this result is also discussed.
Resumo:
InAs/GaSb superlattice (SL) short wavelength infrared photoconduction detectors are grown by molecular beam epitaxy on GaAs(001) semi-insulating substrates. An interfacial misfit mode AlSb quantum dot layer and a thick GaSb layer are grown as buffer layers. The detectors containing a 200-period 2ML/8ML InAs/GaSb SL active layer are fabricated with a pixel area of 800 x 800 mu m(2) without using passivation or antireflection coatings. Corresponding to the 50% cutoff wavelengths of 2.05 mu m at 77K and 2.25 mu m at 300 K, the peak detectivities of the detectors are 4 x 10(9) cm.Hz(1/2)/W at 77K and 2 x 10(8) cm.Hz(1/2)/W at 300 K, respectively.
Resumo:
Horizontal self-organized superlattice structures consisting of alternating In-rich and Al-rich layers formed naturally during solid-source molecular beam epitaxy (MBE) growth of In0.52Al0.48As on exactly (001) InP substrates, with In and At fluxes unchanged. The growth temperatures were changed from 490 to 510 degrees C, the most commonly used growth temperature for In0.52Al0.48As alloy. No self-organized superlattices (SLs) were observed at the growth temperature 490 degrees C, and self-organized SLs were observed in InAlAs layers at growth temperatures ranging from 498 to 510 degrees C. The results show that the period of the SLs is very highly regular, with the value of similar to 6 nm, and the composition of In or Al varies approximately sinusoidally along the [001] growth direction. The theoretical simulation results confirm that the In composition modulation amplitude is less than 0.02 relative the In composition of the In0.52Al0.48As lattice matched with the InP substrate. The influence of InAs self-organized quantum wires on the spontaneously formed InxAl1-xAs/InyAl1-yAs SLs was also studied and the formation of self-organized InxAl1-xAs/InyAl1-yAs SLs was attributed to the strain-mediated surface segregation process during MBE growth of In0.52Al0.48As alloy. (C) 2005 Published by Elsevier Ltd.
Resumo:
In this paper frequency dependence of small-signal capacitance of p-i-n UV detectors, which were fabricated on GaN grown on sapphire substrate by metalorganic chemical vapor deposition, has been studied. The Schibli-Milnes model was used to analyze the capacitance-frequency characteristics. According to high frequency C-V measurements, the deep level mean concentration is about 2.98 x 10(20) cm(-3). The deep level is caused by the un-ionised Mg dopant. The calculated Mg activation energy is 260 meV and the hole thermal capture cross section of the deep level is about 2.73 x 10(-22) cm(2). The applicability of the Schibli-Milnes model is also discussed when the concentration of deep levels exceeds that of the heavily doped n-side. It is concluded that the analytic expression of the Schibli-Milnes model can still be used to describe the capacitance-frequency characteristics of GaN p-i-n UV detectors in good agreement with experiment. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The novel Si stripixel detector, developed at BNL (Brookhaven National Laboratory), has been applied in the development of a prototype Si strip detector system for the PHENIX Upgrade at RHIC. The Si stripixel detector can generate X-Y two-dimensional (2D) position sensitivity with single-sided processing and readout. Test stripixel detectors with pitches of 85 and 560 mu m have been subjected to the electron beam test in a SEM set-up, and to the laser beam test in a lab test fixture with an X-Y-Z table for laser scanning. Test results have shown that the X and Y strips are well isolated from each other, and 2D position sensitivity has been well demonstrated in the novel stripixel detectors. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
1.5 mu m. n-type modulation-doping InGaAsP/InGaAsP strained multiple quantum wells grown by low pressure metalorganic chemistry vapor decomposition technology is reported for the first time in the world. N-type modulation-doped lasers exhibit much lower threshold current densities than conventional lasers with undoped barrier layers. The lowest threshold current density we obtained was 1052.5 A/cm(2) for 1000 mu m long lasers with seven quantum wells. The estimated threshold current density for an infinite cavity length was 94.72A/cm(2)/well, reduced by 23.3% compared with undoped barrier lasers. The n-type modulation doping effects on the lasing characteristics in 1.5 mu m devices have been demonstrated.
Resumo:
An extended subtraction method of scattering parameters for characterizing laser diode is proposed in this paper. The intrinsic response is extracted from the measured transmission coefficients of laser diode, and the parasitics of packaging net-work laser chip are determined from the measured reflection coefficient of laser diode simultaneously. It is shown that the theories agree well with the experimental results.