954 resultados para Allergen-induced Response
Resumo:
The presence of inhibitory nonadrenergic noncholinergic (NANC) intrinsic innervation of the circular muscle of the gastrointestinal sphincters of the South American (SA) opossum was investigated in vitro. Isolated circular muscle strips from the esophagogastric and ileocolonic junctions but not from the gastroduodenal (pylorus) region developed spontaneous tension. Tetrodotoxin (TTX, 1 µM) augmented the spontaneous tension only in the ileocolonic junction strips. Electrical field stimulation of esophagogastric and ileocolonic junction strips caused frequency-dependent responses consisting of a relaxation at lower frequencies (<1 Hz) and a biphasic response or contraction at higher frequencies. In the strips from the pyloric region electrical field stimulation abolished the spontaneous activity at lower frequencies and induced contractions at higher frequencies. The responses elicited by electrical field stimulation in the three sphincters were abolished by TTX (1 µM). Electrical field-induced contractions were reduced while relaxations were enhanced by atropine (1 µM). In the presence of atropine (1 µM) and guanethidine (3 µM), electrical field stimulation, nicotine and ATP induced frequency- or concentration-dependent relaxations of the three sphincters that were abolished by TTX (1 µM). Isoproterenol and sodium nitroprusside caused concentration-dependent relaxations which were TTX-resistant. These findings indicate that the sphincteric circular muscle of the SA opossum gastrointestinal tract is relaxed by the activation of intrinsic NANC nerves and therefore can be used as a model for the study of the mechanisms involved in these responses
Resumo:
Interest in oral tolerance has been renewed in the last few years as a possibility of intervention in human autoimmune diseases. An obstacle in this direction is that, although easily induced in animals virgin of contact with the antigen, oral tolerance becomes hard to induce in previously immunized animals. The present results show that there is an early period after primary immunization in which prolonged oral exposure to the antigen may arrest ongoing immune responses. Beyond this period, oral exposures to the antigen become ineffective and may actually boost immune responses. The end of the susceptible period coincides with the emergence of free specific antibodies in serum. However, the previous administration of purified anti-ovalbumin antibodies (40 µg) was unable to block the induction of oral tolerance to ovalbumin in normal mice
Resumo:
We investigated the effects of aerobic training on the efferent autonomic control of heart rate (HR) during dynamic exercise in middle-aged men, eight of whom underwent exercise training (T) while the other seven continued their sedentary (S) life style. The training was conducted over 10 months (three 1-h sessions/week on a field track at 70-85% of the peak HR). The contribution of sympathetic and parasympathetic exercise tachycardia was determined in terms of differences in the time constant effects on the HR response obtained using a discontinuous protocol (4-min tests at 25, 50, 100 and 125 watts on a cycle ergometer), and a continuous protocol (25 watts/min until exhaustion) allowed the quantification of the parameters (anaerobic threshold, VO2 AT; peak O2 uptake, VO2 peak; power peak) that reflect oxygen transport. The results obtained for the S and the T groups were: 1) a smaller resting HR in T (66 beats/min) when compared to S (84 beats/min); 2) during exercise, a small increase in the fast tachycardia (D0-10 s) related to vagal withdrawal (P<0.05, only at 25 watts) was observed in T at all powers; at middle and higher powers a significant decrease (P<0.05 at 50, 100 and 125 watts) in the slow tachycardia (D1-4 min) related to a sympathetic-dependent mechanism was observed in T; 3) the VO2 AT (S = 1.06 and T = 1.33 l/min) and VO2 peak (S = 1.97 and T = 2.47 l/min) were higher in T (P<0.05). These results demonstrate that aerobic training can induce significant physiological adaptations in middle-aged men, mainly expressed as a decrease in the sympathetic effects on heart rate associated with an increase in oxygen transport during dynamic exercise.
Resumo:
Multiple episodes of blood-brain barrier disruption were induced by sequential intraspinal injections of ethidium bromide. In addition to the barrier disruption, there was toxic demyelination and exposure of myelin components to the immune system. Twenty-seven 3-month-old Wistar rats received 2, 3 or 4 injections of 1 µl of either 0.1% ethidium bromide in normal saline (19 rats) or 0.9% saline (8 rats) at different levels of the spinal cord. The time intervals between the injections ranged from 28 to 42 days. Ten days after the last injection, all rats were perfused with 2.5% glutaraldehyde. The spinal sections were evaluated macroscopically and by light and transmission electron microscopy. All the lesions demonstrated a mononuclear phagocytic infiltrate apparently removing myelin. Lymphocytes were not conspicuous and were found in only 34% of the lesions. No perivascular cuffings were detected. In older lesions (38 days and older) they were found only within Virchow-Robin spaces. This result suggests that multiple blood-brain barrier disruptions with demyelination and exposure of myelin components to the immune system were not sufficient to induce an immune-mediated reaction in the central nervous system.
Resumo:
In the present study, we report that low concentrations of the glutamate ionotropic agonist kainate decreased the turnover of [3H]-phosphoinositides ([3H]-InsPs) induced by muscarinic receptors in the chick embryonic retina. When 100 µM carbachol was used, the estimated IC50 value for kainate was 0.2 µM and the maximal inhibition of ~50% was obtained with 1 µM or higher concentrations of the glutamatergic agonist. Our data also show that veratridine, a neurotoxin that increases the permeability of voltage-sensitive sodium channels, had no effect on [3H]-InsPs levels of the embryonic retina. However, 50 µM veratridine, but not 50 mM KCl, inhibited ~65% of the retinal response to carbachol. While carbachol increased [3H]-InsPs levels from 241.2 ± 38.0 to 2044.5 ± 299.9 cpm/mg protein, retinal response decreased to 861.6 ± 113.9 cpm/mg protein when tissues were incubated with carbachol plus veratridine. These results suggest that the accumulation of phosphoinositides induced by activation of muscarinic receptors can be inhibited by the influx of Na+ ions triggered by activation of kainate receptors or opening of voltage-sensitive sodium channels in the chick embryonic retina.
Resumo:
Early systemic arterial hypotension is a common clinical feature of Pseudomonas septicemia. To determine if Pseudomonas aeruginosa endotoxin induces the release of endothelium-derived nitric oxide (EDNO), an endogenous nitrovasodilator, segments of canine femoral, renal, hepatic, superior mesenteric, and left circumflex coronary arteries were suspended in organ chambers (physiological salt solution, 95% O2/5% CO2, pH 7.4, 37oC) to measure isometric force. In arterial segments contracted with 2 µM prostaglandin F2a, Pseudomonas endotoxin (lipopolysaccharide (LPS) serotype 10(Habs) from Pseudomonas aeruginosa (0.05 to 0.50 mg/ml)) induced concentration-dependent relaxation of segments with endothelium (P<0.05) but no significant change in tension of arteries without endothelium. Endothelium-dependent relaxation in response to Pseudomonas LPS occurred in the presence of 1 µM indomethacin, but could be blocked in the coronary artery with 10 µM NG-monomethyl-L-arginine (L-NMMA), a competitive inhibitor of nitric oxide synthesis from L-arginine. The inhibitory effect of L-NMMA on LPS-mediated vasorelaxation of the coronary artery could be reversed by exogenous 100 µM L-arginine but not by 100 µM D-arginine. These experiments indicate that Pseudomonas endotoxin induces synthesis of nitric oxide from L-arginine by the vascular endothelium. LPS-mediated production of EDNO by the endothelium, possibly through the action of constitutive nitric oxide synthase (NOSc), may decrease systemic vascular resistance and may be the mechanism of early hypotension characteristic of Pseudomonas septicemia.
Resumo:
We have shown that the renin-angiotensin system (RAS) is involved in glucose homeostasis during acute hemorrhage. Since almost all of the physiological actions described for angiotensin II were mediated by AT1 receptors, the present experiments were designed to determine the participation of AT1 receptors in the hyperglycemic action of angiotensin II in freely moving rats. The animals were divided into two experimental groups: 1) animals submitted to intravenous administration of angiotensin II (0.96 nmol/100 g body weight) which caused a rapid increase in plasma glucose reaching the highest values at 5 min after the injection (33% of the initial values, P<0.01), and 2) animals submitted to intravenous administration of DuP-753 (losartan), a non-peptide antagonist of angiotensin II with AT1-receptor type specificity (1.63 µmol/100 g body weight as a bolus, iv, plus a 30-min infusion of 0.018 µmol 100 g body weight-1 min-1 before the injection of angiotensin II), which completely blocked the hyperglycemic response to angiotensin II (P<0.01). This inhibitory effect on glycemia was already demonstrable 5 min (8.9 ± 0.28 mM, angiotensin II, N = 9 vs 6.4 ± 0.22 mM, losartan plus angiotensin II, N = 11) after angiotensin II injection and persisted throughout the 30-min experiment. Controls were treated with the same volume of saline solution (0.15 M NaCl). These data demonstrate that the angiotensin II receptors involved in the direct and indirect hyperglycemic actions of angiotensin II are mainly of the AT1-type.
Resumo:
In the course of studies on the effects of septal area lesions on neuroimmunomodulation and Walker 256 tumor development, it was observed that tumor-induced sodium and water retention was less marked in lesioned than in non-lesioned rats. In the present study possible mechanisms involved in this phenomenon were investigated. The experiments were performed in septal-lesioned (LW; N = 15) and sham-operated (SW; N = 7) 8-week-old male Wistar rats, which received multifocal simultaneous subcutaneous (sc) inoculations of Walker 256 tumor cells about 30 days after the stereotaxic surgery. Control groups (no tumor, sham-operated food-restricted (SFR), N = 7) and lesioned food-restricted (LFR, N = 10) were subjected to a feeding pattern similar to that observed in tumor-bearing animals. Multifocal inoculation of Walker 256 tumor rapidly induces anorexia, which is paradoxically accompanied by an increase in body weight, as a result of renal Na+ and fluid retention. These effects of the tumor were also seen in LW rats, although the rise in fractional sodium balance during the early clinical period was significantly smaller than in SW rats (day 4: SW = 47.6 ± 6.4% and LW = 13.8 ± 5.2%; day 5: SW = 57.5 ± 3.5% and LW = 25.7 ± 4.8%; day 6: SW = 54.4 ± 3.8% and LW = 32.1 ± 4.4%; P<0.05), suggesting a temporary reduction in tumor-induced sodium retention. In contrast, urine output was significantly reduced in SW rats and increased in LW rats (LW up to -0.85 and SW up to 4.5 ml/100 g body weight), with no change in osmolar excretion. These temporary changes in the tumor's effects on LW rats may reflect a "reversal" of the secondary central antidiuretic response induced by the tumor (from antidiuretic to diuretic).
Resumo:
We demonstrated that administration of interferon gamma (IFN-g) to the inbred "l" strain of pregnant rats conferred partial resistance on their offspring to challenge with Trypanosoma cruzi. We now examine if this intervention also modifies the reportedly immunodepressed cellular responses which occur during chronic infection. Offspring were born to mothers undergoing one of the following procedures during gestation: subcutaneous injections of recombinant rat IFN-g, 50,000 IU/rat, five times/week for 3 weeks, which was started on the day of mating (IFN-Mo); infection with 106 trypomastigotes of T. cruzi at 7, 14, and 21 days after mating plus IFN-g treatment as given to the former group (TcIFN-Mo); the same protocol except that physiological saline was injected instead of IFN-g (Tc-Mo); injection of physiological saline only (control-Mo). All offspring groups (N = 8-10/group) were infected at weaning and were assessed 90 days later for their adjuvant-induced arthritic response or levels of major T cell subsets in spleen and lymph nodes. TcIFN-Mo and IFN-Mo offspring showed a reestablished arthritic response, which remained within the range seen in controls. Immunolabeling studies on parallel groups of 90-day-infected offspring showed that the inverse CD4/CD8 cell ratio that is usually seen in lymphoid organs from these chronically infected rats (median 0.61) appeared to have recovered in the TcIFN-Mo and IFN-Mo groups (median 1.66 and 1.78, respectively) and was not different from uninfected controls (1.96). These studies indicate that early stimulation with IFN-g is able to reverse the immunosuppressive state that is usually present during the chronic period of the experimental infection.
Resumo:
The drinking behavior responses to centrally administered NG-nitro-L-arginine methyl ester (L-NAME; 10, 20 or 40 µg/µl), an inhibitor of nitric oxide synthase, were studied in satiated rats, with cannulae stereotaxically implanted into the lateral ventricle (LV) and subfornical organ (SFO). Water intake increased in all animals after angiotensin II (ANG II) injection into the LV, with values of 14.2 ± 1.4 ml/h. After injection of L-NAME at doses of 10, 20 or 40 µg/µl into the SFO before injection of ANG II (12 ng/µl) into the LV, water intake decreased progressively and reached basal levels after treatment with 0.15 M NaCl and with the highest dose of L-NAME (i.e., 40 µg). The water intake obtained after 40 µg/µl L-NAME was 0.8 ± 0.01 ml/h. Also, the injection of L-NAME, 10, 20 or 40 µg/µl, into the LV progressively reduced the water intake induced by hypertonic saline, with values of 5.3 ± 0.8, 3.2 ± 0.8 and 0.7 ± 0.01 ml/h, respectively. These results indicate that nitric oxide is involved in the regulation of drinking behavior induced by centrally administered ANG II and cellular dehydration and that the nitric oxide of the SFO plays an important role in this regulation.
Resumo:
Penetration of Trypanosoma cruzi into mammalian cells depends on the activation of the parasite's protein tyrosine kinase and on the increase in cytosolic Ca2+ concentration. We used metacyclic trypomastigotes, the T. cruzi developmental forms that initiate infection in mammalian hosts, to investigate the association of these two events and to identify the various components of the parasite signal transduction pathway involved in host cell invasion. We have found that i) both the protein tyrosine kinase activation, as measured by phosphorylation of a 175-kDa protein (p175), and Ca2+ mobilization were induced in the metacyclic forms by the HeLa cell extract but not by the extract of T. cruzi-resistant K562 cells; ii) treatment of parasites with the tyrosine kinase inhibitor genistein blocked both p175 phosphorylation and the increase in cytosolic Ca2+ concentration; iii) the recombinant protein J18, which contains the full-length sequence of gp82, a metacyclic stage surface glycoprotein involved in target cell invasion, interfered with tyrosine kinase and Ca2+ responses, whereas the monoclonal antibody 3F6 directed at gp82 induced parasite p175 phosphorylation and Ca2+ mobilization; iv) treatment of metacyclic forms with phospholipase C inhibitor U73122 blocked Ca2+ signaling and impaired the ability of the parasites to enter HeLa cells, and v) drugs such as heparin, a competitive IP3-receptor blocker, caffeine, which affects Ca2+ release from IP3-sensitive stores, in addition to thapsigargin, which depletes intracellular Ca2+ compartments and lithium ion, reduced the parasite infectivity. Taken together, these data suggest that protein tyrosine kinase, phospholipase C and IP3 are involved in the signaling cascade that is initiated on the parasite cell surface by gp82 and leads to Ca2+ mobilization required for target cell invasion.
Resumo:
Hypertension is one of the major precursors of atherosclerotic vascular disease, and vascular smooth muscle abnormal cell replication is a key feature of plaque formation. The present study was conducted to examine the relationship between hypertension and smooth muscle cell proliferation after balloon injury and to correlate neointima formation with resting membrane potential of uninjured smooth muscle cells, since it has been suggested that altered vascular function in hypertension may be related to the resetting of the resting membrane potential in spontaneously hypertensive rats (SHR). Neointima formation was induced by balloon injury to the carotid arteries of SHR and renovascular hypertensive rats (1K-1C), as well as in their normotensive controls, i.e., Wistar Kyoto (WKY) and normal Wistar (NWR) rats. After 14 days the animals were killed and the carotid arteries were submitted to histomorphometric and immunohistochemical analyses. Resting membrane potential measurements showed that uninjured carotid arteries from SHR smooth muscle cells were significantly depolarized (-46.5 ± 1.9 mV) compared to NWR (-69 ± 1.4 mV), NWR 1K-1C (-60.8 ± 1.6 mV), WKY (-67.1 ± 3.2 mV) and WKY 1K-1C (-56.9 ± 1.2 mV). The SHR arteries responded to balloon injury with an enhanced neointima formation (neo/media = 3.97 ± 0.86) when compared to arteries of all the other groups (NWR 0.93 ± 0.65, NWR 1K-1C 1.24 ± 0.45, WKY 1.22 ± 0.32, WKY 1K-1C 1.15 ± 0.74). Our results indicate that the increased fibroproliferative response observed in SHR is not related to the hypertensive state but could be associated with the resetting of the carotid smooth muscle cell resting membrane potential to a more depolarized state.
Resumo:
Until recently, dietary sources of nucleotides were thought not to be essential for good nutrition. Certain states with higher metabolic demands may require larger amounts that cannot be provided by endogenous production. The objective of the present study was to determine the action of nucleotides on the recovery from lactose-induced diarrhea in weaned rats. Thirty-six weanling Fisher rats were divided into two groups. Group 1 received a standard diet and group 2 received a diet containing lactose in place of starch. On the 10th day, six animals per group were sacrificed for histopathological evaluation. The remaining animals were divided into two other subgroups, each with 6 animals, receiving a control diet, a control diet with nucleotides (0.05% adenosine monophosphate, 0.05% guanosine monophosphate, 0.05% cytidine monophosphate, 0.05% uridine monophosphate and 0.05% inosine monophosphate), a diet with lactose, and a diet with lactose and nucleotides. On the 32nd day of the experiment all animals were sacrificed. Animals with diarrhea weighed less than animals without diarrhea. The introduction of nucleotides did not lead to weight gain. Mean diet consumption was lower in the group that continued to ingest lactose, with the group receiving lactose plus nucleotides showing a lower mean consumption. Animals receiving lactose had inflammatory reaction and deposits of periodic acid-Schiff-positive material in intestinal, hepatic and splenic tissues. The introduction of nucleotides led to an improvement of the intestinal inflammatory reaction. In lactose-induced diarrhea, when the stimulus is maintained - lactose overload - the nucleotides have a limited action on the weight gain and on recovery of intestinal morphology, although they have a protective effect on hepatic injury and improve the inflammatory response.
Resumo:
There is extensive evidence that acute stress induces an analgesic response in rats. On the other hand, repeatedly stressed animals may present the opposite effect, i.e., hyperalgesia. Furthermore, exposure to novelty is known to induce antinociception. The effects of repeated restraint stress on nociception after exposure to novelty, as measured by the tail-flick latency (TFL), were studied in adult male rats. The animals were stressed by restraint 1 h daily, 5 days a week for 40 days. The control group was not submitted to restraint. Nociception was assessed with a tail-flick apparatus. After being familiarized with the TFL apparatus, each group was subdivided into two other groups, i.e., with or without novelty. Animals were subjected to the TFL measurement twice. For the animals exposed to novelty, the first TFL measurement was made immediately before, and the second 2 min after a 2-min exposure to a new environment. While the control group presented an increased TFL after exposure to a novel environment, chronically stressed animals did not show this effect. These results suggest that repeated restraint stress induces an alteration in the nociceptive response, perhaps as a result of an alteration in endogenous opioids in these animals.
Resumo:
We examined some of the mechanisms by which the aspirin metabolite and the naturally occurring metabolite gentisic acid induced relaxation of the guinea pig trachea in vitro. In preparations with or without epithelium and contracted by histamine, gentisic acid caused concentration-dependent and reproducible relaxation, with mean EC50 values of 18 µM and Emax of 100% (N = 10) or 20 µM and Emax of 92% (N = 10), respectively. The relaxation caused by gentisic acid was of slow onset in comparison to that caused by norepinephrine, theophylline or vasoactive intestinal peptide (VIP). The relative rank order of potency was: salbutamol 7.9 > VIP 7.0 > gentisic acid 4.7 > theophylline 3.7. Gentisic acid-induced relaxation was markedly reduced (24 ± 7.0, 43 ± 3.9 and 78 ± 5.6%) in preparations with elevated potassium concentration in the medium (20, 40 or 80 mM, respectively). Tetraethylammonium (100 µM), a nonselective blocker of the potassium channels, partially inhibited the relaxation response to gentisic acid, while 4-AP (10 µM), a blocker of the voltage potassium channel, inhibited gentisic acid-induced relaxation by 41 ± 12%. Glibenclamide (1 or 3 µM), at a concentration which markedly inhibited the relaxation induced by the opener of ATP-sensitive K+ channels, levcromakalim, had no effect on the relaxation induced by gentisic acid. Charybdotoxin (0.1 or 0.3 µM), a selective blocker of the large-conductance Ca2+-activated K+ channels, caused rightward shifts (6- and 7-fold) of the gentisic acid concentration-relaxation curve. L-N G-nitroarginine (100 µM), a NO synthase inhibitor, had no effect on the relaxant effect of gentisic acid, and caused a slight displacement to the right in the relaxant effect of the gentisic acid curve at 300 µM, while methylene blue (10 or 30 µM) or ODQ (1 µM), the inhibitors of soluble guanylate cyclase, all failed to affect gentisic acid-induced relaxation. D-P-Cl-Phe6,Leu17[VIP] (0.1 µM), a VIP receptor antagonist, significantly inhibited (37 ± 7%) relaxation induced by gentisic acid, whereas CGRP (8-37) (0.1 µM), a CGRP antagonist, only slightly enhanced the action of gentisic acid. Taken together, these results provide functional evidence for the direct activation of voltage and large-conductance Ca+2-activated K+ channels, or indirect modulation of potassium channels induced by VIP receptors and accounts for the predominant relaxation response caused by gentisic acid in the guinea pig trachea.