969 resultados para Algae.
Resumo:
The partial sequence of the rbcL from Bryopsis hypnoides, including the sequences of the upstream, extron and partial intron, was amplified by PCR and their sequences were determined. With Spinacia oleracea as the outgroup, neighbor-joining method and maximum parsimony method were used respectively to build phylogenetic trees according to the rbcL exon sequence among 13 species that were the typical species of six phyla. Two kinds of trees showed clearly that there were two groups among those species, the green lineage and the non-green lineage. And the relationships of algae in the green lineage were similar in the two trees but those in the non-green lineage were not consistent. Analysis of codon preference indicated that the codon preference of the rbcL exon of Bryopsis hypnoides distinctly differed from that of the relevant sequence of photosynthetic bacteria.
Resumo:
A simple method was developed for extracting DNA from brown algae Laminaria japonica, which possess large amounts of acidic polysaccharides. Firstly, the sporophyte were washed by eliminating polysaccaride buffer to remove the polysaccharides and then ground in liquid nitrogen. Secondly, the powders were treated with lysing buffer. Thirdly, KAc was used to eliminate the remaining acidic polysaccharides. The extracted DNA was purified using a chloroform-isoamyl alcohol ( 24: 1 v/v), and precipitated in cold isopropanol. The yield was from 18.7 to 37.5 mu g g(-1) (wet weight) and the purity of total DNA was determined spectrophotometrically as the ratio of A(260)/A(280), which was about 1.7 - 1.9. The extracted DNA was of high quality and suitable for molecular analyses, such as PCR, restriction enzyme digestion. This method is a reproducible, simple, and rapid technique for routine DNA extraction from sporophyte in Laminaria japonica. Furthermore, the low cost of this method makes it attractive for large-scale studies.
Resumo:
Tissue culture, SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and spectra analysis were used for studying the aggregation mechanism of protoplasts from Bryopsis hypnoides Lamouroux and the discrepancy between the protoplast-regenerated plants and the wild type. The aggregation of protoplasts from B. hypnoides was observed in natural seawater and artificial seawater with different pH values, and the location and mechanism of the materials causing the aggregation were also studied. Results showed that the protoplasts could aggregate into some viable spheres in natural seawater and subsequently grow into mature individuals. Aggregation of the protoplasts depended exclusively upon the pH value (6-11), and the protoplasts aggregated best at pH 8-9. Some of the extruded protoplasts were separated into two parts by centrifugation: the pellet (PO) and the supernatant (PL). The PO could aggregate in artificial seawater (pH 8.3) but not in PL. No aggregation was found in PO cultured in natural seawater containing nigericin, which can dissipate the proton gradients across the membrane. These experiments suggest that the aggregation of protoplasts is proton-gradient dependent and the materials causing the aggregation were not in the vacuolar sap, but located on the surface or inside the organelles. Furthermore, the transfer of the materials across the membrane was similar to Delta pH-based translocation (Delta pH/TAT) pathway that occurs in the chloroplasts of higher plants and bacteria. Obvious discrepancies in both the total soluble proteins and the ratio of chlorophyll a to chlorophyll b between the regenerated B. hypnoides and the wild type were found, which may be related to the exchange of genetic material during aggregation of the organelles. In the process of development, diatom Amphora coffeaeformis Agardh attached to the protoplast aggregations, retarding their further development, and once they were removed, the aggregations immediately germinated, which showed that diatoms can affect the development of other algae.
Resumo:
Currently, antioxidants are added in the human diet to prevent free radical-induced cell damage, and there has been an explosive interest in the use of antioxidant nutritional supplements. The effects of different factors on the antioxidant activity of phycocyanins (PCs) were studied. The results showed that PCs generated hydroxyl radicals in the light, while scavenging them in the dark. When PCs were denatured by sodium dodecyl sulfate, urea and in alkaline condition, their ability to generate hydroxyl radicals disappeared and that of scavenging them greatly increased. This showed that the phycobilin moiety is the main part of PC involved in scavenging hydroxyl radicals. Trypsin hydrolysis of PCs showed that the apoprotein portion of the molecule also made a significant contribution to the antioxidant activity.
Resumo:
The thylakoid membranes were isolated and purified from gametophyte of Porphyrayezoensis Ueda (P yezoensis) by sucrose density gradient ultracentrifugation. After R yezoensis gametophyte thylakoid membranes were solubilized with SDS, the photosystem 11 (PSII) particles were isolated and purified. The activity of PSII particles was determined with DCIP (2,6-dichloroindophenol) photoreduction reaction. The composition of purified PSII particles was detected by SDS-PAGE. As a result, seven proteins including 55 kD protein, 47 kD protein, 43 kD protein, 33 kD protein, 31 kD protein, 29 kD protein, and 18 kD protein were found. Compared with PSII particles of higher plants and other algae, they were identified as D1/D2 complex, CP47, CP43, 33 kD protein, D1, D2 and cyt c-550 respectively. Besides, other three new proteins of 20 kD, 16 kD and 14 kD respectively were found. Among these extrinsic proteins, the 16 kD and 14 kD proteins had not been reported previously, and the 20 kD protein was found for the first time in multicellular red algae.
Resumo:
Two photoperiodic responses, the development of sporophylls and hairs, have been quantified in sporophytes of the brown alga Undaria pinnatifida. In a final experiment, the algae were cultivated in outdoor, 2000-L seawater tanks in a greenhouse for up to 12 weeks, and daylength was regulated by automatic blinds mounted on top of the tanks. Vegetative young sporophytes were treated under short-day (SD; 8 h light per day) or long-day conditions (LD; 16 h light per day), at 12 h light per day or in a night-break regime (NB; 8 h light per day, 7.5 h dark, 1 h light, 7.5 h dark). The earliest sporophyll development was observed 6, 7 or 9 weeks under LD, NB or SD conditions, respectively. After 12 weeks the sporophylls were significantly longer and wider under LD or NB conditions than in the SD regime, and only half of the experimental algae had formed sporophylls under SD conditions, but all algae under LD or NB conditions. In a foregoing 7-week culture experiment performed in 300-L indoor tanks, enhanced sporophyll formation had also been observed under LD and not under SD conditions (NB omitted). In both experiments, blade elongation rates remained high until the end of the experiments in SD, but declined during sporophyll initiation in LD, NB or at 12 h light per day. Another difference caused by photoperiod was observed in regard to the development of surface hair spots which occurred in both experiments on the blades in LD, NB or at 12 h light per day with identical densities, but were completely lacking under SD conditions. It is concluded that U. pinnatifida is a facultatative long-day plant in regard to reproduction forming vigorously sporophylls in long days, and an obligate long-day plant in regard to hair formation.
Resumo:
Algae have been part of Chinese life for thousands of years. They are widely used as food and have been cited in Chinese literature as early as 2500 years ago. However, formal taxonomic studies on Chinese algae were initiated by foreign scientists only about 200 years ago, and by Chinese phycologists only about 90 years ago. This paper summarizes the history of modern phycological studies on Chinese algae and provides an overview of the achievements of phycological studies by Chinese scientists, especially on algal taxonomy, morphology, genetics, ecology and environmental research, physiology, biotechnology, algal culture, applied phycology and space phycology, in the last century. Recent development in phycological research focuses on algal floristic and molecular systematics, algal molecular biotechnology, applied phycology including micro and macroalgal cultivation and algal product development, and the roles of algae in environmental pollution control. These areas will also be the main focuses of Chinese phycological research in the foreseeable future.
Resumo:
Coral bleaching, which is defined as the loss of colour in corals due to the loss of their symbiotic algae (commonly called zooxanthellae) or pigments or both, is occurring globally at increasing rates, and its harm becomes more and more serious during these two decades. The significance of these bleaching events to the health of coral reef ecosystems is extreme, as bleached corals exhibited high mortality, reduced fecundity and productivity and increased susceptibility to diseases. This decreased coral fitness is easily to lead to reef degradation and ultimately to the breakdown of the coral reef ecosystems. Recently, the reasons leading to coral bleaching are thought to be as follows: too high or too low temperature, excess ultraviolet exposure, heavy metal pollution, cyanide poison and seasonal cycle. To date there has been little knowledge of whether mariculture can result in coral bleaching and which substance has the worst effect on corals. And no research was conducted on the effect of hypoxia on corals. To address these questions, effects of temperature, hypoxia, ammonia and nitrate on bleaching of three coral species were studied through examination of morphology and the measurement of the number of symbiotic algae of three coral species Acropora nobilis, Palythoa sp. and Alveopora verrilliana. Results showed that increase in temperature and decrease in dissolved oxygen could lead to increasing number of symbiotic algae and more serious bleaching. In addition, the concentration of 0.001 mmol/L ammonia or nitrate could increase significantly the expulsion of the symbiotic algae of the three coral species. Except for Acropora nobilis, the numbers of symbiotic algae of other two corals did not significantly increase with the increasing concentration of ammonia and nitrate. Furthermore, different hosts have different stress susceptibilities on coral bleaching.
Resumo:
This paper reports for the first time the transient expression of a reporter gene, LacZ, in the unicellular green alga Haematococcus pluvialis. By employing the micro-particle bombardment method, motile cells in the exponential phase showed transient expression of lacZ. This was detected in bombarded motile cells under the rupture-disc pressures of 3103 KPa and 4137 KPa. Transient expression of LacZ gene could not be observed in non-motile cells of this alga under the same transformation condition. No LacZ background was found in either the motile cells or the non-motile cells. The study suggests a promising potential of the SV40 promoter and the lacZ reporter gene in genetic engineering of unicellular green algae.
Resumo:
R-phycoerythrin was isolated and purified from Gracilaria verrucosa on an expanded-bed adsorption column combined with ion-exchange chromatography, which can effectively solve the problem of blockage of chromatographic columns due to polysaccharides during isolation and purification of phycobiliproteins. 0.1 M (NH4)(2)SO4 proved best to elute R-phycoerythrin from the expanded-bed column, and desalted 0.1 M (NH4)(2)SO4 eluate was used on an ion-exchange column to purify the R-phycoerythrin. Using this two-stage chromatography, the purity (OD565/OD280) of the R-phycoerythrin from G. verrucosa is increased to 4.4, and the yield of purified R-phycoerythrin can reach 0.141 mg . g(-1) of the frozen alga.
Resumo:
R-phycoerythrin, a light-harvesting protein in some marine algae, and can be widely used in medicine, was isolated and purified from a red alga, Palmaria palmata (Lannaeus) Kuntze, using the streamline column (expanded bed adsorption) combined with ion-exchange chromatography. Because the crude extract was applied to the column upwardly, the column would not be blocked by polysaccharides usually very abundant in the extract of marine alga, this kind of blockage could hardly lie overcome in ordinary chromatographic column. After applying the crude extract containing 0.5 mol/L (NH4)(2)SO4, (NH4)(2)SO4 solution of different concentrations (0.2 mol/L, 0.1 mol/L and 0.05 mol/L) was used to elute the column downwardly and the eluates were collected and desalted. The desalted eluates were then applied onto all ion-exchange chromatographic column loaded with Q-sepharose for further purification of the R-phycoerythrin. Through these two steps, the purity (OD565/OD280) of the R-phycoerythrin from P. palmata was up to 3.5, more than 3.2, the commonly accepted criterion for purity, and the yield of the purified R-phycoerythrin could reach 0.122 mg/g of frozen P. palmata, much higher than that of phycobiliproteins purified with the previous methods. The result indicated that the cost of R-phycoerythrin will drop down with the method reported in this article.
Resumo:
In old China there were very few people engaged in the study of the algae, but in new China, freshwater and marine algae are studied by over one hundred old and new phycologists. There is now an algal biotechnology industry consisting of an aquaculture industry, producing large amounts of the seaweeds Laminaria, Porphyra, Undaria, Gracilaria, eucheumoids, and the microalgae Dunaliella and Spirulina. There is also a phycocolloid industry, producing algin, agar and carrageenan; an industry producing chemicals and drugs, such as iodine, mannitol, phycocyanin, beta -carotene, PSS (propylene glycol alginate sulfate) and FPS (fucose-containing sulfated polysaccharides) and an industry producing food, feed and fertilizer. The Laminaria cultivation industry produces about 900,000 t dry Laminaria, probably the largest producer in the world and 13,000 t algin, undoubtedly one of the largest algin producer in the world.
Resumo:
The chlorophyll fluorescence kinetics of marine red alga Grateloupia turutunt Yamada, green alga Ulva pertusa Kjellm and brown alga Laminaria japonica Aresch during natural sustained dehydration were monitored and investigated. The pulse amplified modulation (PAM) system was used to analyze the distinct fluorescence parameters during thallus dehydration. Results proved that the fluorescence kinetics of different seaweed all showed three patterns of transformation with sustained water loss. These were: 1) peak kinetic pattern (at the early stage of dehydration fluorescence enhanced and quenched subsequently, representing a normal physiological state). 2) plateau kinetic pattern (with sustained water loss fluorescence enhanced continuously but quenching became slower, finally reaching its maximum). 3) Platform kinetic pattern (fluorescence fell and the shape of kinetic curve was similar to plateau kinetic pattern). A critical water content (CWC) could be found and defined as the percentage of water content just prior to the fluorescence drop and to be a significant physiological index for evaluation of plant drought tolerance. Once thallus water content became lower than this value the normal peak pattern can not be recovered even through rehydration, indicating an irreversible damage to the thylakoid membrane. The CWC value corresponding to different marine species were varied and negatively correlated with their desiccation tolerance, for example. Laminaria japonica had the highest CWC value (around 90%) and the lowest dehydration tolerance of the three. In addition, a fluorescence "burst" was found only in red algae during rehydration. The different fluorescence parameters F-o, F-v and F-v, F-m were measured and compared during water loss. Both F-o and F-v increased in the first stage of dehydration but F-v/F-m. kept almost constant. So the immediate response of in vivo chlorophyll fluorescence to dehydration was an enhancement. Later with sustained dehydration F-o increased continuously while F-v decreased and tended to become smaller and smaller. The major changes in fluorescence (including fluorescence drop during dehydration and the burst during rehydration) were all attributed to the change in F-o instead of F-v This significance of F-o indicates that it is necessary to do more research on F-o as well as on its relationship with the state of thylakoid membrane.
Resumo:
An acidic polysaccharide (PY3) was isolated from the hot water extract of the red algae Porphyra yezoensis by successive column chromatographies over DEAE-cellulose and Sephadex G-200. PY3 with an average molecular weight of 1.8x10(5) was demonstrated to be composed of galactose (Gal), 3,6-anhydrogalactose (3,6-AnGal), 6-OSO3-galactose (6-OSO3-Gal) and xylose (Xyl) in an approximate molar ratio of 25 : 15, 10, 1. In view of Smith degradation and methylation and on the basis of spectral evidence including those of IR, GC, GC-MS, and H-1 and C-13 NMR, the most probable repeating unit of PY3 could be proposed as [(1-->3)beta -D-Gal(1 --> 4)alpha -L-3,6-AnGal](3)-[(1 --> 3)beta -D-Gal(1 --> 4)alpha -L-6-OSO3-Gal](2) with a xylose moiety at the C-6 of one of every twenty-five beta -D-Gal residues. To our knowledge, PY3 was shown to be the first porphyran possessing occasional xylose branches.
Resumo:
The distribution of iodine in various biological macromolecules in Sargassum kjellmanianum was studied using neutron activation analysis combined with chemical and biochemical separation techniques. The results indicate that iodine is mainly bound with protein, part of iodine with pigment and polyphenol, and little with polysaccharides, such as algin, fucoidan and cellulose. This result is significant for the mechanism of enriching iodine of algae and utilization of alga iodine.