946 resultados para Airport zoning.
Resumo:
Investing in transport infrastructures such as roadways, airports and seaports has proven to improve a country's trade performance through reduction of transportation costs and providing access to production and market. This research investigates the diminishing return of infrastructure investment and also the rate of return of two types of infrastructure investment strategies on trade. An augmented gravity model is used with econometric analysis methods in this study. The results have shown that as roadway and airport densities increase, the marginal returns on trade decrease. Empirical evidence from the United States and China with all their trading partners from the past twenty years has also suggested existence of diminishing return of infrastructure investment on roadways and airports. Infrastructure investment strategy that focuses on increasing roadway and airport density experiences smaller diminishing return on trade. In contrast, seaport investment that focuses on port quality and efficiency generates higher return on trade. A trade benefiting infrastructure investment strategy that best utilizes financial resources must balance between quality and quantity based on a country's current level of infrastructure asset.
Resumo:
The Szklary holtite is represented by three compositional varieties: (I) Ta-bearing (up to 14.66 wt.% Ta(2)O(5)), which forms homogeneous crystals and cores within zoned crystals; (2) Ti-bearing (up to 3.82 wt.% TiO(2)), found as small domains within the core; and (3) Nb-bearing (up to 5.30 wt.% Nb(2)O(5),) forming the rims of zoned crystals. All three varieties show variable Sb+As content, reaching 19.18 wt.% Sb(2)O(3) (0.87 Sb a.p.f.u.) and 3.30 wt.% As(2)O(3) (0.22 As a.p.f.u.) in zoned Ta-bearing holtite, which constitutes the largest Sb+As content reported for the mineral. The zoning in holtite is a result of Ta-Nb fractionation in the parental pegmatite-forming melt together with contamination of the relatively thin Szklary dyke by Fe, Mg and Ti. Holtite and the As- and Sb-bearing dumortierite, which in places overgrows the youngest Nb-bearing zone, suggest the following crystallization sequence: Ta-bearing holtite -> Ti-bearing holtite -> Nb-bearing holtite -> As- and Sb-bearing, (Ta,Nb,Ti)-poor dumortierite -> As- and Sb-dominant, (Ta,Nb,Ti)-free dumortierite-like mineral (16.81 wt.% As(2)O(3) and 10.23 wt.% Sb(2)O(3)) with (As+Sb) > Si. The last phase is potentially a new mineral species, Al(6)rectangle B(Sb,As)(3)O(15). or Al(5)rectangle(2)B(Sb,As)(3)O(12)(OH)(3), belonging to the dumortierite group. The Szklary holtite shows no evidence of clustering of compositions around 'holtite I' and 'holtite II'. Instead, the substitutions of Si(4+) by Sb(3+)+As(3+) at the Si/Sb sites and of Ta(5+) by Nb(5+) or Ti(4+) at the Al(l) site suggest possible solid solutions between: (1) (Sb,As)-poor and (Sb,As)-rich holtite; (2) dumortierite and the unnamed (As+Sb)-dominant dumortierite-like mineral; and (3) Ti-bearing dumortierite and holtite, i.e. our data provide further evidence for miscibility between holtite and dumortierite, but leave open the question of defining the distinction between them. The Szklary holtite crystallized from the melt along with other primary Ta-Nb-(Ti) minerals such as columbite-(Mn), tantalite-(Mn), stibiotantalite and stibiocolumbite as the availability of Ta decreased. The origin of the parental melt can be related to anatexis in the adjacent Sowie Mountains complex, leading to widespread migmatization and metamorphic segregation in pelitic-psammitic sediments metamorphosed at similar to 390-380 Ma.
Resumo:
The Yanque nonsulfide Pb-Zn deposit (inferred resources 12.5 Mt @ 3.7% Pb and @ 3.5% Zn) is located in the Andahuaylas-Yauri ore province (Cuzco, southern Peru). The deposit occurs within a base metal mineralized district, centered on the medium-sized Dolores porphyry copper. A thorough geological, mineralogical and geochemical study has carried out in order to define: the relationships between the Dolores Cu-porphyry ore and the Yanque Zn-Pb polymetallic mineralization, and the characteristics of the economic nonsulfide concentrations. Both sedimentary and igneous rocks constitute the backbone of the Yanque-Dolores area. The sedimentary lithologies belong to the Soraya, Mara and Ferrobamba Fms. (upper Jurassic-middle Cretaceous). The Yanque orebody is hosted by the Mara Fm., which prevailingly consists of a siliciclastic sedimentary breccia. The original sulfide mineralization consisted of galena, pyrite and sphalerite. The host rock has been affected by a strong hydrothermal alteration, characterized by prevailing sericite/illite, as in the typical porphyry-related phyllic-argillic alteration stage, and by minor kaolinite, dolomite and quartz. Minor element geochemistry, characterized by Sb, As, Mn, Ag and locally also by Cu, points to magmatic-hydrothermal related mineralizing fluids. The Pb isotopic compositions from Dolores and Yanque sulfides are similar, and are typical of the Tertiary magmatically-derived ores in this part of Peru. The hydrothermally altered rocks at Yanque have the same Pb isotopic compositions as the sulfides, thus confirming the hypothesis that the Yanque primary Zn-Pb mineralization may have been produced by hydrothermal circulation related to the emplacement of the Dolores Cu-porphyry, as it is the case of other porphyry Cu systems associated with polymetallic mineralization elsewhere. However, no simple genetic model for the mineralization involving just one fluid circulation episode is able to explain the data. The Yanque economic nonsulfide ore association consists of sauconite, hemimorphite, smithsonite and cerussite, which result from the weathering and alteration of the original sulfide mineralization. Zinc is allocated mainly in sauconite (Zn-smectite), rather than in carbonates: a factor strictly related to the prevailing siliciclastic character of the host rock. Distinctive features of the Yanque orebody are the comparable ore grades for both Pb and Zn (3.5% Zn and 3.7% Pb), and the inverse supergene chemical zoning. In fact, contrary to other supergene ores of this type, zinc prevails in the top zone of the Yanque deposit, whereas lead content increases with depth. Considering the different mobility of the two metals in solution, it may be assumed that most of the primary zinc that was the source for the Yanque nonsulfides was originally located far from the position occupied by the galena mineralization, whose remnants have been observed on site. Zinc sulfides may have been originally contained in the eroded rock volumes that surrounded the actual deposit: the zinc-rich solutions have possibly migrated through the siliciclastic Mara Fm. and precipitated the nonsulfide minerals by porosity filling and replacement processes. In this sense, the Yanque secondary Zn-Pb deposit could be considered as a special type of “Exotic” mineralization.
Resumo:
Sound knowledge of the spatial and temporal patterns of rockfalls is fundamental for the management of this very common hazard in mountain environments. Process-based, three-dimensional simulation models are nowadays capable of reproducing the spatial distribution of rockfall occurrences with reasonable accuracy through the simulation of numerous individual trajectories on highly-resolved digital terrain models. At the same time, however, simulation models typically fail to quantify the ‘real’ frequency of rockfalls (in terms of return intervals). The analysis of impact scars on trees, in contrast, yields real rockfall frequencies, but trees may not be present at the location of interest and rare trajectories may not necessarily be captured due to the limited age of forest stands. In this article, we demonstrate that the coupling of modeling with tree-ring techniques may overcome the limitations inherent to both approaches. Based on the analysis of 64 cells (40 m × 40 m) of a rockfall slope located above a 1631-m long road section in the Swiss Alps, we illustrate results from 488 rockfalls detected in 1260 trees. We illustrate that tree impact data cannot only be used (i) to reconstruct the real frequency of rockfalls for individual cells, but that they also serve (ii) the calibration of the rockfall model Rockyfor3D, as well as (iii) the transformation of simulated trajectories into real frequencies. Calibrated simulation results are in good agreement with real rockfall frequencies and exhibit significant differences in rockfall activity between the cells (zones) along the road section. Real frequencies, expressed as rock passages per meter road section, also enable quantification and direct comparison of the hazard potential between the zones. The contribution provides an approach for hazard zoning procedures that complements traditional methods with a quantification of rockfall frequencies in terms of return intervals through a systematic inclusion of impact records in trees.
Resumo:
The Barchi-Kol terrain is a classic locality of ultrahigh-pressure (UHP) metamorphism within the Kokchetav metamorphic belt. We provide a detailed and systematic characterization of four metasedimentary samples using dominant mineral assemblages, mineral inclusions in zircon and monazite, garnet zonation with respect to major and trace elements, and Zr-in-rutile and Ti-in-zircon temperatures. A typical diamond-bearing gneiss records peak conditions of 49 ± 4 kbar and 950–1000 °C. Near isothermal decompression of this rock resulted in the breakdown of phengite associated with a pervasive recrystallization of the rock. The same terrain also contains mica schists that experienced peak conditions close to those of the diamond-bearing rocks, but they were exhumed along a cooler path where phengite remained stable. In these rocks, major and trace element zoning in garnet has been completely equilibrated. A layered gneiss was metamorphosed at UHP conditions in the coesite field, but did not reach diamond-facies conditions (peak conditions: 30 kbar and 800–900 °C). In this sample, garnet records retrograde zonation in major elements and also retains prograde zoning in trace elements. A garnet-kyanite-micaschist that reached significantly lower pressures (24 ± 2 kbar, 710 ± 20 °C) contains garnet with major and trace element zoning. The diverse garnet zoning in samples that experienced different metamorphic conditions allows to establish that diffusional equilibration of rare earth element in garnet likely occurs at ~900–950 °C. Different metamorphic conditions in the four investigated samples are also documented in zircon trace element zonation and mineral inclusions in zircon and monazite. U-Pb geochronology of metamorphic zircon and monazite domains demonstrates that prograde (528–521 Ma), peak (528–522 Ma), and peak to retrograde metamorphism (503–532 Ma) occurred over a relatively short time interval that is indistinguishable from metamorphism of other UHP rocks within the Kokchetav metamorphic belt. Therefore, the assembly of rocks with contrasting P-T trajectories must have occurred in a single subduction-exhumation cycle, providing a snapshot of the thermal structure of a subducted continental margin prior to collision. The rocks were initially buried along a low geothermal gradient. At 20–25 kbar they underwent near isobaric heating of 200 °C, which was followed by continued burial along a low geothermal gradient. Such a step-wise geotherm is in good agreement with predictions from subduction zone thermal models.
Resumo:
There are too many conflicting uses of the ocean in a time where resources are rapidly dwindling. Marine Spatial Planning is catching on globally, and may soon come to Long Island Sound, but it may be difficult to decide who gets to do what, where.
Resumo:
This paper investigates economic aspects of marine protected areas (MPAs) that are closely related to the underlying marine biota. Many marine scientists recognize that enough is now known about the marine biology for the scientific siting of MPAs to protect marine environments that create associated economic values. Marine scientists have identified several objectives of MPAs. These include protection of genetic and biodiversity, increase in population levels and structures (e.g., age, size, fecundity), enrichment of ecosystems by promoting species interactions, and the protection of continental shelf landscapes from invasive human actions. Indeed, some marine scientists and fisheries economists view MPAs as an 'insurance policy' against over-fishing and other human uses of oceanic resources that have damaged so many of the world's fisheries. The economic analysis presented here pays attention to optimal zoning, policies to maintain sustainable economic rents, and the optimal policing of MPAs.
Resumo:
The basalts and oceanic andesites from the aseismic Ninetyeast Ridge display trachytic, vesicular and amygdaloidal textures suggesting a subaerial volcanic environment. The normative composition of the Ninetyeast Ridge ranges from olivine picriteto nepheline-normative alkaline basalt, suggesting a wide range of differentiation. This is further supported by the fractionation-differentiation trends displayed by transition metal trace elements (Ni, Cr, V and Cu). The Ninetyeast Ridge rocks are enriched in rare earth (RE) and large ion lithophile (LIL) elements and Sr isotopes (0.7043-0.7049), similar to alkali basalts and tholeiites from seamounts and islands, but different from LIL-element-depleted tholeiitic volcanic rocks of the recent seismic mid-Indian oceanic ridge. The constancy of 87Sr/86Sr ratios for basalts and andesites is compatible with a model involving fractional crystallization of mafic magma. The variation of 87Sr/86Sr ratios between 0.97 and 2.79 may possibly be explained in terms of a primordial hot mantle and/or chemically contrasting heterogeneous mantle source layers relatively undepleted in LIL elements at different periods in the geologic past. In general, the Sr isotopic data for rocks from different tectonic environments are consistent with a "zoning-depletion model" with systematically arranged alternate alkali-poor and alkali-rich layers in the mantle beneath the Indian Ocean.
Resumo:
Heavy and light minerals were examined in 29 samples from Sites 494, 498, 499, 500, and 495 on the Deep Sea Drilling Project Leg 67 Middle America Trench transect; these sites represent lower slope, trench, and oceanic crust environments off Guatemala. All samples are Quaternary except those from Hole 494A (Pliocene) and Hole 498A (Miocene). Heavy-mineral assemblages of the Quaternary sediments are characterized by an immature pyroxene-amphibole suite with small quantities of olivine and epidote. The Miocene sediments yielded an assemblage dominated by epidote and pyroxene but lacking olivine; the absence of olivine is attributed to selective removal of the most unstable components by intrastratal solution. Light-mineral assemblages of all samples are predominantly characterized by volcanic glass and plagioclase feldspar. The feldspar compositions are compatible with andesitic source rocks and frequently exhibit oscillatory zoning. The heavy- and light-mineral associations of these sediments suggest a proximal volcanic source, most probably the Neogene highland volcanic province of Guatemala. Sand-sized components from Site 495 are mainly biogenic skeletons and volcanic glass and, in one instance (Section 495-5-3), euhedral crystals of gypsum.
Resumo:
We use Nomarski differential interference contrast imaging to reveal the wealth of complex detail in plagioclase zoning for selected samples from Sites 834, 839, and 841. All sites contain some plagioclase with the very complex internal core zoning, convolute zoning, or very fine-scale euhedral oscillatory zoning of the sort generally considered typical of island-arc volcanic rocks. Plagioclase with contrasted zoning styles may coexist within a single lithologic unit or even within a single thin section. Especially notable is the presence of scattered plagioclase phenocrysts with complex zoning throughout Unit 7 in Hole 834B, which in other respects is relatively uniform in composition and appears to have had little or no differential sorting of crystals and liquid. Although our study is by no means comprehensive, it is sufficient to indicate that magmatic conditions have been variable during crystallization of these rocks, and mixing or at least minor contamination may be required to explain some of the relations observed. By analogy with experimental studies, it is possible that variations in water content, either over time or within different parts of a chamber or conduit system, have contributed to the observed contrasts in zoning.