960 resultados para Ahlfors, Lars
Resumo:
It has been hypothesized that children and adolescents might be more vulnerable to possible health effects from mobile phone exposure than adults. We investigated whether mobile phone use is associated with brain tumor risk among children and adolescents.
Resumo:
Whether the use of mobile phones is a risk factor for brain tumors in adolescents is currently being studied. Case--control studies investigating this possible relationship are prone to recall error and selection bias. We assessed the potential impact of random and systematic recall error and selection bias on odds ratios (ORs) by performing simulations based on real data from an ongoing case--control study of mobile phones and brain tumor risk in children and adolescents (CEFALO study). Simulations were conducted for two mobile phone exposure categories: regular and heavy use. Our choice of levels of recall error was guided by a validation study that compared objective network operator data with the self-reported amount of mobile phone use in CEFALO. In our validation study, cases overestimated their number of calls by 9% on average and controls by 34%. Cases also overestimated their duration of calls by 52% on average and controls by 163%. The participation rates in CEFALO were 83% for cases and 71% for controls. In a variety of scenarios, the combined impact of recall error and selection bias on the estimated ORs was complex. These simulations are useful for the interpretation of previous case-control studies on brain tumor and mobile phone use in adults as well as for the interpretation of future studies on adolescents.
Resumo:
The measurement of fluid volumes in cases of pericardial effusion is a necessary procedure during autopsy. With the increased use of virtual autopsy methods in forensics, the need for a quick volume measurement method on computed tomography (CT) data arises, especially since methods such as CT angiography can potentially alter the fluid content in the pericardium. We retrospectively selected 15 cases with hemopericardium, which underwent post-mortem imaging and autopsy. Based on CT data, the pericardial blood volume was estimated using segmentation techniques and downsampling of CT datasets. Additionally, a variety of measures (distances, areas and 3D approximations of the effusion) were examined to find a quick and easy way of estimating the effusion volume. Segmentation of CT images as shown in the present study is a feasible method to measure the pericardial fluid amount accurately. Downsampling of a dataset significantly increases the speed of segmentation without losing too much accuracy. Some of the other methods examined might be used to quickly estimate the severity of the effusion volumes.
Resumo:
The objective of this study was to explore the perception of the legal authorities regarding different report types and visualization techniques for post-mortem radiological findings.
Resumo:
For the past 10 years, medical imaging techniques have been increasingly applied to forensic investigations. To obtain histological and toxicological information, tissue and liquid samples are required. In this article, we describe the development of a low-cost, secure, and reliable approach for a telematic add-on for remotely planning biopsies on the Virtobot robotic system. Data sets are encrypted and submitted over the Internet. A plugin for the OsiriX medical image viewer allows for remote planning of needle trajectories that are used for needle placement. The application of teleradiological methods to image-guided biopsy in the forensic setting has the potential to reduce costs and, in conjunction with a mobile computer tomographic scanner, allows for tissue sampling in a mass casualty situation involving nuclear, biological, or chemical agents, in a manner that minimizes the risk to involved staff.
Resumo:
To assess the reliability of radiologic identification using visual comparison of ante and post mortem paranasal sinus computed tomography (CT).
Resumo:
Keyboards, mice, and touch screens are a potential source of infection or contamination in operating rooms, intensive care units, and autopsy suites. The authors present a low-cost prototype of a system, which allows for touch-free control of a medical image viewer. This touch-free navigation system consists of a computer system (IMac, OS X 10.6 Apple, USA) with a medical image viewer (OsiriX, OsiriX foundation, Switzerland) and a depth camera (Kinect, Microsoft, USA). They implemented software that translates the data delivered by the camera and a voice recognition software into keyboard and mouse commands, which are then passed to OsiriX. In this feasibility study, the authors introduced 10 medical professionals to the system and asked them to re-create 12 images from a CT data set. They evaluated response times and usability of the system compared with standard mouse/keyboard control. Users felt comfortable with the system after approximately 10 minutes. Response time was 120 ms. Users required 1.4 times more time to re-create an image with gesture control. Users with OsiriX experience were significantly faster using the mouse/keyboard and faster than users without prior experience. They rated the system 3.4 out of 5 for ease of use in comparison to the mouse/keyboard. The touch-free, gesture-controlled system performs favorably and removes a potential vector for infection, protecting both patients and staff. Because the camera can be quickly and easily integrated into existing systems, requires no calibration, and is low cost, the barriers to using this technology are low.
Resumo:
A standard rheumatoid forefoot reconstruction consists of arthrodesis of the first metatarsophalangeal (MTP) joint and resection arthroplasty of the lesser metatarsal heads. However, preservation of the metatarsal heads has gained renewed interest since the medical treatment of rheumatoid arthritis has improved dramatically.
Resumo:
To evaluate a new isotropic 3D proton-density, turbo-spin-echo sequence with variable flip-angle distribution (PD-SPACE) sequence compared to an isotropic 3D true-fast-imaging with steady-state-precession (True-FISP) sequence and 2D standard MR sequences with regard to the new 3D magnetic resonance observation of cartilage repair tissue (MOCART) score.
Resumo:
Background Inappropriate cross talk between mammals and their gut microbiota may trigger intestinal inflammation and drive extra-intestinal immune-mediated diseases. Epithelial cells constitute the interface between gut microbiota and host tissue, and may regulate host responses to commensal enteric bacteria. Gnotobiotic animals represent a powerful approach to study bacterial-host interaction but are not readily accessible to the wide scientific community. We aimed at refining a protocol that in a robust manner would deplete the cultivable intestinal microbiota of conventionally raised mice and that would prove to have significant biologic validity. Methodology/Principal Findings Previously published protocols for depleting mice of their intestinal microbiota by administering broad-spectrum antibiotics in drinking water were difficult to reproduce. We show that twice daily delivery of antibiotics by gavage depleted mice of their cultivable fecal microbiota and reduced the fecal bacterial DNA load by 400 fold while ensuring the animals' health. Mice subjected to the protocol for 17 days displayed enlarged ceca, reduced Peyer's patches and small spleens. Antibiotic treatment significantly reduced the expression of antimicrobial factors to a level similar to that of germ-free mice and altered the expression of 517 genes in total in the colonic epithelium. Genes involved in cell cycle were significantly altered concomitant with reduced epithelial proliferative activity in situ assessed by Ki-67 expression, suggesting that commensal microbiota drives cellular proliferation in colonic epithelium. Conclusion We present a robust protocol for depleting conventionally raised mice of their cultivatable intestinal microbiota with antibiotics by gavage and show that the biological effect of this depletion phenocopies physiological characteristics of germ-free mice.
Resumo:
INTRODUCTION: Guidelines for the treatment of patients in severe hypothermia and mainly in hypothermic cardiac arrest recommend the rewarming using the extracorporeal circulation (ECC). However,guidelines for the further in-hospital diagnostic and therapeutic approach of these patients, who often suffer from additional injuries—especially in avalanche casualties, are lacking. Lack of such algorithms may relevantly delay treatment and put patients at further risk. Together with a multidisciplinary team, the Emergency Department at the University Hospital in Bern, a level I trauma centre, created an algorithm for the in-hospital treatment of patients with hypothermic cardiac arrest. This algorithm primarily focuses on the decision-making process for the administration of ECC. THE BERNESE HYPOTHERMIA ALGORITHM: The major difference between the traditional approach, where all hypothermic patients are primarily admitted to the emergency centre, and our new algorithm is that hypothermic cardiac arrest patients without obvious signs of severe trauma are taken to the operating theatre without delay. Subsequently, the interdisciplinary team decides whether to rewarm the patient using ECC based on a standard clinical trauma assessment, serum potassium levels, core body temperature, sonographic examinations of the abdomen, pleural space, and pericardium, as well as a pelvic X-ray, if needed. During ECC, sonography is repeated and haemodynamic function as well as haemoglobin levels are regularly monitored. Standard radiological investigations according to the local multiple trauma protocol are performed only after ECC. Transfer to the intensive care unit, where mild therapeutic hypothermia is maintained for another 12 h, should not be delayed by additional X-rays for minor injuries. DISCUSSION: The presented algorithm is intended to facilitate in-hospital decision-making and shorten the door-to-reperfusion time for patients with hypothermic cardiac arrest. It was the result of intensive collaboration between different specialties and highlights the importance of high-quality teamwork for rare cases of severe accidental hypothermia. Information derived from the new International Hypothermia Registry will help to answer open questions and further optimize the algorithm.
Resumo:
Recent studies have suggested that the scavenger receptor MARCO (macrophage receptor with collagenous structure) mediates activation of the immune response in bacterial infection of the central nervous system (CNS). The chemotactic G-protein-coupled receptor (GPCR) formyl-peptide-receptor like-1 (FPRL1) plays an essential role in the inflammatory responses of host defence mechanisms and neurodegenerative disorders such as Alzheimer's disease (AD). Expression of the antimicrobial peptide cathelicidin CRAMP/LL-37 is up-regulated in bacterial meningitis, but the mechanisms underlying CRAMP expression are far from clear.
Resumo:
Primate multisensory object perception involves distributed brain regions. To investigate the network character of these regions of the human brain, we applied data-driven group spatial independent component analysis (ICA) to a functional magnetic resonance imaging (fMRI) data set acquired during a passive audio-visual (AV) experiment with common object stimuli. We labeled three group-level independent component (IC) maps as auditory (A), visual (V), and AV, based on their spatial layouts and activation time courses. The overlap between these IC maps served as definition of a distributed network of multisensory candidate regions including superior temporal, ventral occipito-temporal, posterior parietal and prefrontal regions. During an independent second fMRI experiment, we explicitly tested their involvement in AV integration. Activations in nine out of these twelve regions met the max-criterion (A < AV > V) for multisensory integration. Comparison of this approach with a general linear model-based region-of-interest definition revealed its complementary value for multisensory neuroimaging. In conclusion, we estimated functional networks of uni- and multisensory functional connectivity from one dataset and validated their functional roles in an independent dataset. These findings demonstrate the particular value of ICA for multisensory neuroimaging research and using independent datasets to test hypotheses generated from a data-driven analysis.
Resumo:
Previous studies have shown both declining and stable semantic-memory abilities during healthy aging. There is consistent evidence that semantic processes involving controlled mechanisms weaken with age. In contrast, results of aging studies on automatic semantic retrieval are often inconsistent, probably due to methodological limitations and differences. The present study therefore examines age-related alterations in automatic semantic retrieval and memory structure with a novel combination of critical methodological factors, i.e., the selection of subjects, a well-designed paradigm, and electrophysiological methods that result in unambiguous signal markers. Healthy young and elderly participants performed lexical decisions on visually presented word/non-word pairs with a stimulus onset asynchrony (SOA) of 150 ms. Behavioral and electrophysiological data were measured, and the N400-LPC complex, an event-related potential component sensitive to lexical-semantic retrieval, was analyzed by power and topographic distribution of electrical brain activity. Both age groups exhibited semantic priming (SP) and concreteness effects in behavioral reaction time and the electrophysiological N400-LPC complex. Importantly, elderly subjects did not differ significantly from the young in their lexical decision and SP performances as well as in the N400-LPC SP effect. The only difference was an age-related delay measured in the N400-LPC microstate. This could be attributed to existing age effects in controlled functions, as further supported by the replicated age difference in word fluency. The present results add new behavioral and neurophysiological evidence to earlier findings, by showing that automatic semantic retrieval remains stable in global signal strength and topographic distribution during healthy aging.
Resumo:
Comparison of two different insertion techniques for implantation of totally implantable access ports (TIAP).