972 resultados para Ag nanocrystals
Resumo:
2009
Resumo:
Colloidal stability and efficient interfacial charge transfer in semiconductor nanocrystals are of great importance for photocatalytic applications in aqueous solution since they provide long-term functionality and high photocatalytic activity, respectively. However, colloidal stability and interfacial charge transfer efficiency are difficult to optimize simultaneously since the ligand layer often acts as both a shell stabilizing the nanocrystals in colloidal suspension and a barrier reducing the efficiency of interfacial charge transfer. Here, we show that, for cysteine-coated, Pt-decorated CdS nanocrystals and Na2SO3 as hole scavenger, triethanolamine (TEOA) replaces the original cysteine ligands in situ and prolongs the highly efficient and steady H2 evolution period by more than a factor of 10. It is shown that Na2SO3 is consumed during H2 generation while TEOA makes no significant contribution to the H2 generation. An apparent quantum yield of 31.5%, a turnover frequency of 0.11 H2/Pt/s, and an interfacial charge transfer rate faster than 0.3 ps were achieved in the TEOA stabilized system. The short length, branched structure and weak binding of TEOA to CdS as well as sufficient free TEOA in the solution are the keys to enhancing colloidal stability and maintaining efficient interfacial charge transfer at the same time. Additionally, TEOA is commercially available and cheap, and we anticipate that this approach can be widely applied in many photocatalytic applications involving colloidal nanocrystals.
Resumo:
Development of methodologies for the controlled chemical assembly of nanoparticles into plasmonic molecules of predictable spatial geometry is vital in order to harness novel properties arising from the combination of the individual components constituting the resulting superstructures. This paper presents a route for fabrication of gold plasmonic structures of controlled stoichiometry obtained by the use of a di-rhenium thio-isocyanide complex as linker molecule for gold nanocrystals. Correlated scanning electron microscopy (SEM)—dark-field spectroscopy was used to characterize obtained discrete monomer, dimer and trimer plasmonic molecules. Polarization-dependent scattering spectra of dimer structures showed highly polarized scattering response, due to their highly asymmetric D∞h geometry. In contrast, some trimer structures displayed symmetric geometry (D3h), which showed small polarization dependent response. Theoretical calculations were used to further understand and attribute the origin of plasmonic bands arising during linker-induced formation of plasmonic molecules. Theoretical data matched well with experimentally calculated data. These results confirm that obtained gold superstructures possess properties which are a combination of the properties arising from single components and can, therefore, be classified as plasmonic molecules
Resumo:
A Business Newsletter for Agriculture
Resumo:
A Business Newsletter for Agriculture
Resumo:
A Business Newsletter for Agriculture
Resumo:
This thesis focus is the development of hybrid organic-inorganic systems based on Silicon Nanocrystals (SiNCs) with possible applications in the field of bioimaging and solar energy conversion. SiNCs were engineered thanks to the realization of a strong covalent Si-C bond on their surface, which allowed us to disperse them in different solvents with different final purpose. Chapter 1 introduces the basic properties of nanomaterials. Chapter 2 describes all the synthetic procedures to obtain the organic molecules-functionalized SiNCs. Chapter 3 illustrates an organic-inorganic antenna system based on SiNCs conjugated with diphenylanthracene (DPA) photoactive molecules, which was also embedded into Luminescent Solar Concentrators (LSC) made of a polymeric matrix. The optical and photovoltaic performances of this device were compared with the ones of a LSC embedded with a physical mixture made of SiNCs plus DPA at the same concentrations of the two components in the covalent system. Chapter 4 shows many different techniques to functionalize SiNCs with polyethylene glycol (PEG) chains in order to make them dispersible in water, for biomedical imaging applications. Chapter 5 presents the synthesis of dyes and/or SiNCs loaded Polymer Nanoparticles (PNPs) capable of excitation energy transfer (EET) mechanism. Chapter 6 is focused on the realization of photo-switchable systems based on azobenzene derivatives-functionalized SiNCs. These organic-inorganic hybrid materials were studied to possibly obtain a new light-driven response of SiNCs. In the end, chapter 7 reports the activity I followed in America, at The University of Texas at Austin, in the laboratory led by the professor Brian Korgel. Here I studied and compared the properties of high temperature hydrosilylated SiNCs and room temperature, radical promoted, hydrosilylated SiNCs.
Resumo:
In questo lavoro di tesi sono stati preparati elettrocatalizzatori metallici 3D di argento supportato su schiume di rame a cella aperta, impiegandoli nella riduzione selettiva del 5-idrossimetilfurfurale (HMF) a 2,5-bisidrossimetilfurano (BHMF). L’utilizzo di questi supporti consente di incrementare l’area superficiale a disposizione, rispetto ai supporti 2D. La preparazione delle schiume è stata effettuata utilizzando due metodi di deposizione: spostamento galvanico ed elettrodeposizione. Lo scopo del lavoro è valutare l’influenza del metodo di deposizione sull’attività catalitica, per questo motivo le schiume bimetalliche ottenute sono state confrontate a quelle monometalliche di rame e argento. Inoltre è stato studiato l’effetto della concentrazione di HMF sulle prestazioni dei catalizzatori, con l’obiettivo finale di ottenere un sistema attivo a concentrazioni industriali. Le schiume sono state sottoposte a cicli di prove catalitiche a concentrazione di HMF crescente 0,02 M, 0,05 M e 0,10 M e caratterizzate prima e dopo la sequenza di prove con analisi SEM-EDS, XRD, spettroscopia raman. Le soluzioni sono state analizzate mediante ICP, GC-MS, ESI-MS. Con lo spostamento galvanico si ha la crescita di dendriti, formate prevalentemente sui bordi, e agglomerati di particelle nelle zone interne, mentre per elettrodeposizione si ottiene minore formazione di dendriti e particelle mediamente più piccole. La presenza di argento come fase attiva non migliora la conversione rispetto alle schiume monometalliche, ma causa un aumento di selettività ed efficienza faradica. Incrementando la concentrazione di HMF tutti i campioni presentano un aumento di conversione e un decremento di selettività ed efficienza faradica. Il catalizzatore ottenuto per spostamento galvanico, mostra prestazioni migliori a concentrazioni elevate e nelle prove di stabilità non dà segni di disattivazione, al contrario della schiuma preparata per elettrodeposizione che risulta leggermente disattivata.
Resumo:
Durante il mio periodo di tirocinio mi sono occupato della sintesi e caratterizzazione di cluster carbonilici eterometallici, ed in particolare di cluster Ag-Cu-Fe, Au-Cu-Fe, e Ni-Pd. In un primo momento il lavoro si è concentrato sullo studio della reazione tra cluster Cu-Fe e sali di Ag e Au, con lo scopo di ottenere specie Ag-Cu-Fe, e Au-Cu-Fe. Nella seconda parte l’attività è stata incentrata sulla sintesi di cluster Ni-Pd ad elevata nuclearità, attraverso reazioni tra [Ni6(CO)12]2- e composti di Pd(II). In entrambi i casi le sintesi sono state condotte variando i rapporti stechiometrici dei reagenti e i solventi, permettendo l’ottenimento di specie, caratterizzate spettroscopicamente mediante tecnica IR. In alcuni casi è stato anche possibile ottenere cristalli caratterizzati strutturalmente tramite diffrattometria a raggi X. Le reazioni di [Cu3Fe3(CO)12]3- con quantità crescenti di M=Ag, Au danno luogo alla formazione in sequenza di [Cu5Fe4(CO)16]3-, [MxCu5-xFe4(CO)16]3- (x = 0-5), [M5Fe4(CO)16]3-, [M6Fe4(CO)16]2-. Successivamente, nel caso in cui M= Ag, un ulteriore aggiunta di sali di M+ porta alla formazione di [Ag13Fe8(CO)32]3-, mentre se M= Au si formano i cosiddetti “bruni d’oro” e alla fine, [AuFe4(CO)16]-. Le specie [MxCu5-xFe4(CO)16]3- risultano particolarmente interessanti dato che possono essere viste come leghe molecolari M/Cu, che mostrano disordine sia sostituzionale che composizionale. Per quanto riguarda i cluster Ni-Pd sono state ottenute tre nuove specie carboniliche ad elevata nuclearità, ovvero [Ni37-xPd7+x(CO)48]6- (x= 0,69), [HNi37-xPd7+x(CO)48]5- (x= 0,53) and [Ni22-xPd20+x(CO)48]6- (x = 0.63). In tutte queste strutture il Pd tende ad occupare posizioni che minimizzano le interazioni Pd-CO massimizzando le interazioni M-M, mentre l’opposto risulta per il Ni. Ciò si traduce in una parziale segregazione dei due metalli, anche se alcuni fenomeni di disordine (sostituzionale e composizionale) sono presenti in tali strutture.
Resumo:
In the last decades, nanomaterials, and in particular semiconducting nanoparticles (or quantum dots), have gained increasing attention due to their controllable optical properties and potential applications. Silicon nanoparticles (also called silicon nanocrystals, SiNCs) have been extensively studied in the last years, due to their physical and chemical properties which render them a valid alternative to conventional quantum dots. During my PhD studies I have planned new synthetical routes to obtain SiNCs functionalised with molecules which could ameliorate the properties of the nanoparticle. However, this was certainly challenging, because SiNCs are very susceptible to many reagents and conditions that are often used in organic synthesis. They can be irreversibly quenched in the presence of alkalis, they can be damaged in the presence of oxidants, they can modify their optical properties in the presence of many nitrogen-containing compounds, metal complexes or simple organic molecules. If their surface is not well-passivated, the oxygen can introduce defect states, or they can aggregate and precipitate in several solvents. Therefore, I was able to functionalise SiNCs with different ligands: chromophores, amines, carboxylic acids, poly(ethylene)glycol, even ameliorating functionalisation strategies that already existed. This thesis will collect the experimental procedures used to synthesize silicon nanocrystals, the strategies adopted to functionalise effectively the nanoparticle with different types of organic molecules, and the characterisation of their surface, physical properties and luminescence (mostly photogenerated, but also electrochemigenerated). I also spent a period of 7 months in Leeds (UK), where I managed to learn how to synthesize other cadmium-free quantum dots made of copper, indium and sulphur (CIS QDs). During my last year of PhD, I focused on their functionalisation by ligand exchange techniques, yielding the first example of light-harvesting antenna based on those quantum dots. Part of this thesis is dedicated to them.
Resumo:
The present paper describes a novel, simple and reliable differential pulse voltammetric method for determining amitriptyline (AMT) in pharmaceutical formulations. It has been described for many authors that this antidepressant is electrochemically inactive at carbon electrodes. However, the procedure proposed herein consisted in electrochemically oxidizing AMT at an unmodified carbon nanotube paste electrode in the presence of 0.1 mol L(-1) sulfuric acid used as electrolyte. At such concentration, the acid facilitated the AMT electroxidation through one-electron transfer at 1.33 V vs. Ag/AgCl, as observed by the augmentation of peak current. Concerning optimized conditions (modulation time 5 ms, scan rate 90 mV s(-1), and pulse amplitude 120 mV) a linear calibration curve was constructed in the range of 0.0-30.0 μmol L(-1), with a correlation coefficient of 0.9991 and a limit of detection of 1.61 μmol L(-1). The procedure was successfully validated for intra- and inter-day precision and accuracy. Moreover, its feasibility was assessed through analysis of commercial pharmaceutical formulations and it has been compared to the UV-vis spectrophotometric method used as standard analytical technique recommended by the Brazilian Pharmacopoeia.
Resumo:
Lawsonia inermis mediated synthesis of silver nanoparticles (Ag-NPs) and its efficacy against Candida albicans, Microsporum canis, Propioniabacterium acne and Trichophyton mentagrophytes is reported. A two-step mechanism has been proposed for bioreduction and formation of an intermediate complex leading to the synthesis of capped nanoparticles was developed. In addition, antimicrobial gel for M. canis and T. mentagrophytes was also formulated. Ag-NPs were synthesized by challenging the leaft extract of L. inermis with 1 mM AgNO₃. The Ag-NPs were characterized by Ultraviolet-Visible (UV-Vis) spectrophotometer and Fourier transform infrared spectroscopy (FTIR). Transmission electron microscopy (TEM), nanoparticle tracking and analysis sytem (NTA) and zeta potential was measured to detect the size of Ag-NPs. The antimicrobial activity of Ag-NPs was evaluated by disc diffusion method against the test organisms. Thus these Ag-NPs may prove as a better candidate drug due to their biogenic nature. Moreover, Ag-NPs may be an answer to the drug-resistant microorganisms.
Resumo:
High phosphate (Pi) levels and extracellular matrix (ECM) accumulation are associated with chronic kidney disease progression. However, how high Pi levels contribute to ECM accumulation in mesangial cells is unknown. The present study investigated the role and mechanism of high Pi levels in ECM accumulation in immortalized human mesangial cells (iHMCs). iHMCs were exposed to normal (0.9 mM) or increasing Pi concentrations (2.5 and 5 mM) with or without diferent blockers or activators. NOX4, phosphorylated AMPK (p-AMPK), phosphorylated SMAD3 (p-SMAD3), fibronectin (F/N), collagen IV (C-IV) and alpha-smooth muscle actin (α-SMA) expression was assessed via western blot and immunofluorescence. Lucigenin-enhanced chemiluminescence, and dihydroethidium (DHE) assessed NADPH oxidase activity and superoxide (SO), respectively. In iHMCs, a Pi transporter blocker (PFA) abrogated high Pi-induced AMPK inactivation, increase in NADPH oxidase-induced reactive oxygen species (ROS) levels, NOX4, p-SMAD3, α-SMA and C-IV expression. AMPK activation by AICAR, NOX4 silencing or NADPH oxidase blocker prevented high Pi-induced DHE levels, p-SMAD3, F/N, C-IV and α-SMA expression. AMPK inactivation with NOX4-induced ROS formation and transforming growth factor ß-1 (TGFß-1) signaling activation mediates high Pi-induced ECM accumulation in iHMCs. Maneuvers increasing AMPK or reducing NOX4 activity may contribute to renal protection under hyperphosphatemia.
Resumo:
Bettini et al (2006 Nat. Nanotechnol. 1 182-5) reported the first experimental realization of linear atomic chains (LACs) composed of different atoms (Au and Ag). The different contents of Au and Ag were observed in the chains from what was found in the bulk alloys, which raises the question of what the wire composition is, if it is in equilibrium with a bulk alloy. In this work we address the thermodynamic driving force for species fractionation in LACs under tension, and we present the density-functional theory results for Ag-Au chain alloys. A pronounced stabilization of the wires with an alternating Ag-Au sequence is observed, which could be behind the experimentally observed Au enrichment in LACs from alloys with high Ag content.
Resumo:
The androgen insensitivity syndrome (AIS) is described as a dysfunction of the androgen receptor (AR) in 46,XY individuals, which can be associated with mutations in the AR gene or can be due to unknown mechanisms. Different mutations in AIS generally cause variable phenotypes that range from a complete hormone resistance to a mild form usually associated with male infertility. The purpose of this study was to search for mutations in the AR gene in a fertile man with gynecomastia and to evaluate the influence of the mutation on the AR transactivation ability. Sequencing of the AR gene revealed the p.Pro695Ser mutation. It is located within the AR ligand-binding domain. Bioinformatics analysis indicated a deleterious role, which was verified after testing transactivation activity and N-/C-terminal (N/C) interaction by in vitro expression of a reporter gene and 2-hybrid assays. p.Pro695Ser showed low levels of both transactivation activity and N/C interaction at low dihydrotestosterone (DHT) conditions. As the ligand concentration increased, both transactivation activity and N/C interaction also increased and reached normal levels. Therefore, this study provides functional insights for the p.Pro695Ser mutation described here for the first time in a patient with mild AIS. The expression profile of p.Pro695Ser not only correlates to the patient's phenotype, but also suggests that a high-dose DHT therapy may overcome the functional deficit of the mutant AR.