879 resultados para Aerobic physical training
Resumo:
1. Maximal lactate steady state (MLSS) corresponds to the highest blood lactate concentration (MLSSc) and workload (MLSSw) that can be maintained over time without continual blood lactate accumulation and is considered an important marker of endurance exercise capacity. The present study was undertaken to determine MLSSw and MLSSc in running mice. In addition, we provide an exercise training protocol for mice based on MLSSw.2. Maximal lactate steady state was determined by blood sampling during multiple sessions of constant-load exercise varying from 9 to 21 m/min in adult male C57BL/6J mice. The constant-load test lasted at least 21 min. The blood lactate concentration was analysed at rest and then at 7 min intervals during exercise.3. The MLSSw was found to be 15.1 +/- 0.7 m/min and corresponded to 60 +/- 2% of maximal speed achieved during the incremental exercise testing. Intra- and interobserver variability of MLSSc showed reproducible findings. Exercise training was performed at MLSSw over a period of 8 weeks for 1 h/day and 5 days/week. Exercise training led to resting bradycardia (21%) and increased running performance (28%). of interest, the MLSSw of trained mice was significantly higher than that in sedentary littermates (19.0 +/- 0.5 vs 14.2 +/- 0.5 m/min; P = 0.05), whereas MLSSc remained unchanged (3.0 mmol/L).4. Altogether, we provide a valid and reliable protocol to improve endurance exercise capacity in mice performed at highest workload with predominant aerobic metabolism based on MLSS assessment.
Resumo:
The objective of this study was to compare the effect of different strength training protocols added to endurance training on running economy (RE). Sixteen well-trained runners (27.4 +/- 4.4 years; 62.7 +/- 4.3 kg; 166.1 +/- 5.0 cm), were randomized into two groups: explosive strength training (EST) (n = 9) and heavy weight strength training (HWT) (n = 7) group. They performed the following tests before and after 4 weeks of training: 1) incremental treadmill test to exhaustion to determine of peak oxygen uptake and the velocity corresponding to 3.5 mM of blood lactate concentration; 2) submaximal constant-intensity test to determine RE; 3) maximal countermovernent jump test and; 4) one repetition maximal strength test in leg press. After the training period, there was an improvement in RE only in the HWT group (HWT = 47.3 +/- 6.8 vs. 44.3 +/- 4.9 ml.kg(-1) -min(-1); EST = 46.4 +/- 4.1 vs. 45.5 +/- 4.1 ml.kg(-1) .min(-1)). In conclusion, a short period of traditional strength training can improve RE in well-trained runners, but this improvement can be dependent on the strength training characteristics. When comparing to explosive training performed in the same equipment, heavy weight training seems to be more efficient for the improvement of RE.
Swimming training exacerbates pathological cardiac hypertrophy in kinin B(2) receptor-deficient mice
Resumo:
Kallikrein-kinin system exerts cardioprotective effects against pathological hypertrophy. These effects are modulated mainly via B(2) receptor activation. Chronic physical exercise can induce physiological cardiac hypertrophy characterized by normal organization of cardiac structure. Therefore, the aim of this work was to verify the influence of kinin B(2) receptor deletion on physiological hypertrophy to exercise stimulus. Animals were submitted to swimming practice for 5 min or for 60 min, 5 days a week, during 1 month and several cardiac parameters were evaluated. Results showed no significantly difference in heart weight between both groups, however an increased left ventricle weight and myocyte diameter were observed after the 60 min swimming protocol, which was more pronounced in B(2)(-/-) mice. In addition, sedentary B(2)(-/-) animals presented higher left ventricle mass when compared to wild-type (WT) mice. An increase in capillary density was observed in exercised animals, however the effect was less pronounced in B(2)(-/-) mice. Collagen, a marker of pathological hypertrophy, was increased in B(2)(-/-) mice submitted to swimming protocol, as well as left ventricular thickness, suggesting that these animals do not respond with physiological hypertrophy for this kind of exercise. In conclusion, our data suggest an important role for the kinin B(2) receptor in physiological cardiac hypertrophy. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to address the question if the VO2 kinetics is further improved as the aerobic training status increases from trained to elite level athletes. Maximal oxygen uptake (VO(2)max), work-rate associated to VO(2)max (IVO(2)max) and VO2 kinetics of moderate (Mod) and maximal exercise (Max) were determined in fifty-five subjects. Then, they were assigned into three groups: low (LF), intermediate (IF) and high (HF) aerobic fitness level. In average, the VO(2)max of LF, IF and HF groups were, respectively, 36.0 +/- 3.1, 51.1 +/- 4.5 and 68.1 +/- 3.9 ml . kg . min(-1) (p <= 0.05 among each other). VO2 kinetics mean response time of both exercise intensities were significantly faster (p <= 0.05) in HF (Mod, 27.5 +/- 5.5 s; Max, 32.6 +/- 8.3 s) and IF (Mod, 25.0 +/- 3.1 s; Max, 42.6 +/- 10.4 s) when compared to LF (Mod, 35.7 +/- 7.9 s; Max: 57.8 +/- 17.8 s). We can conclude that VO2 kinetics is improved as the fitness level is increased from low to intermediate but not further improved as the aerobic fitness level increases from intermediate to high.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective of the present study was to compare pulmonary gas exchange kinetics (VO 2 kinetics) and time to exhaustion (Tlim) between trained and untrained individuals during severe exercise performed on a cycle ergometer and treadmill. Eleven untrained males in running (UR) and cycling (UC), nine endurance cyclists (EC), and seven endurance runners (ER) were submitted to the following tests on separate days: (i) incremental test for determination of maximal oxygen uptake (VO 2max) and the intensity associated with the achievement of VO 2max (IVO 2max) on a mechanical braked cycle ergometer (EC and UC) and on a treadmill (ER and UR); (ii) all-out exercise bout performed at IVO 2max to determine the time to exhaustion at IVO 2max (Tlim) and the time constant of oxygen uptake kinetics (τ). The τ was significantly faster in trained group, both in cycling (EC = 28.2 ± 4.7 s; UC = 63.8 ± 25.0 s) and in running (ER = 28.5 ± 8.5 s; UR = 59.3 ± 12.0 s). Tlim of untrained was significantly lower in cycling (EC = 384.4 ± 66.6 s vs. UC; 311.1 ± 105.7 s) and higher in running (ER = 309.2 ± 176.6 s vs. UR = 439.8 ± 104.2 s). We conclude that the VO 2 kinetic response at the onset of severe exercise, carried out at the same relative intensity is sensitive to endurance training, irrespective of the exercise type. The endurance training seems to differently influence Tlim during exercise at IVO 2max in running and cycling. © 2003 Taylor & Francis Ltd.
Resumo:
Exercise training is often recommended in prevention and treatment of obesity. The present study was designed to compare the effects of intermittent and continuous exercise on weight loss and carcass composition in obese rats. Obese male Wistar rats (monosodium glutamate [MSG] administration, 4 mg/g of body weight every other day from birth to 14 days old) were used. After drug administration, the rats were separated into three groups: MSG-SED (sedentary), MSG-CONT (continuous, swimming, 45 min/day, 5 days/week, with and overload of 5% body weight for 12 weeks) and MSG-INT (intermittent, 15s swimming intermitted by 15s rest, during 45 min, 5 days/week, with and overload of 15% body weight for 12 weeks). Rats of the same age and strain, administered with saline were used as control (SAL), and subdivided into three groups: SAL-SED, SAL-CONT and SAL-INT. The animals were evaluated at the 10 weeks of training and 8 weeks of its interruption. MSG rats showed higher carcass fat as well as weight and cell size in epididymal adipose tissue than SAL rats, indicting the efficacy of the drug in producing obesity. Intermittent training protocol led to a reduction in blood lactate accumulation during acute exercise and both protocols reduced body weight gain during the experiment in MSG rats. After 8 weeks of training interruption no differences were observed among groups in the examined parameters. Only intermittent exercise training improved aerobic fitness but both protocols were similarly efficient in determining weight loss. However, the effects were transitory, since they disappeared after detraining.
Resumo:
Background and objective: It has been shown that aerobic exercise is useful to reduce arterial pressure, however, the effectiveness of an exercise program is still controversial and not very well analyzed among populations with low-income. The objective of the present study was to set up an individualized physical fitness program - Projeto Hipertensão - focused on hypertensive people, patients from a Health Basic Unit (HBU) and, after that, to investigate the effects of this program on physical fitness, metabolic profile and pressure levels. Methods: Sixteen hypertensive women (56 ± 3yrs) under regular pharmacological treatment underwent 4 months of a supervised aerobic and stretching exercise program (3 sessions/wk, 90 min/session, 60% of V̇O 2 max). Several physical and metabolic variables were compared before and after 4 months of training. Results: Training significantly reduced systolic arterial pressure (SAP, -6%), improved cardio-respiratory fitness (+42% of V̇O2max), flexibility (+11%) and plasma glucose content (-4%). BMI and % fat did not change. Besides modifying metabolic profile, it was found that training presented significant correlations between individual initial values of cholesterol total level (CT), high density lipoprotein (HDL-C) and low density lipoprotein (LDL-C) and its responses after exercise. Conclusions: The study shows that exercise programs can be personalized for hypertensive patients from a HBU and confirms the effectiveness of exercise on AP, physical fitness, flexibility and lipid profile on hypertensive patients. The expressive reduction of AP in hypertensive subjects suggests that this exercise intervention should be emphasized on other health centers which assist low-income population.
Resumo:
Papoti, M., L.E.B. Martins, S.A. Cunha, A.M. Zagatto, and C.A. Gobatto. Effects of taper on swimming force and swimmer performance after an experimental ten-week training program. J. Strength Cond. Res. 21(2):538-542. 2007.- The purpose of this research was to examine how an 11-day taper after an 8.5-week experimental training cycle affected lactate levels during maximal exercise, mean force, and performance in training swimmers, independent of shaving, psychological changes, and postcompetition effects. Fourteen competition swimmers with shaved legs and torsos were recruited from the São Paulo Aquatic Federation. The training cycle consisted of a basic training period (endurance and quality phases) of 8.5 weeks, with 5,800 m·d -1 mean training volume and 6 d·wk -1 frequency; and a taper period (TP) of 1.5 weeks' duration that incorporated a 48% reduction in weekly volume without altering intensity. Attained swimming force (SF) and maximal performance over 200m maximal swim (Pmax) before and after taper were measured. After taper, SF and Pmax improved 3.6 and 1.6%, respectively (p < 0.05). There were positive correlations (p < 0.05) between SF and Pmax before (r = 0.86) and after (r = 0.83) the taper phase. Peak lactate concentrations after SF were unaltered before (6.79 ± 1.2 mM) and after (7.15 ± 1.8 mM) TP. Results showed that TP improved mean swimming velocity, but not in the same proportion as force after taper, suggesting that there are other factors influencing performance in faster swimming. © 2007 National Strength & Conditioning Association.
Resumo:
The aim of this work was to evaluate the effect of physical preconditioning in the responsiveness of rat pulmonary rings submitted to lung ischemia/reperfusion (IR). Wistar rats were divided into three groups: Sedentary sham-operated (SD/SHAM); sedentary submitted to ischemia/reperfusion (SD/IR) and trained submitted to ischemia/reperfusion (TR/IR) animals. Exercise training consisted in sessions of 60 min/day running sessions, 5 days/week for 8 weeks. Left pulmonary IR was performed by occluding for 90 min and reperfusing for 120 min. After that, pulmonary arteries were isolated and concentration-response curves to acetylcholine (ACh), histamine (HIST), sodium nitroprusside (SNP), phenylephrine and U46619 were obtained. Neither potency (- log EC50) nor maximal responses (Emax) were modified for ACh and HIST in all groups. On the other hand, the potency for SNP was significantly increased in TR/IR group (8.23 ± 0.06) compared to SD/IR group (7.85 ± 0.04). Contractile responses mediated by a-adrenergic receptor were markedly decreased in IR groups (SD/IR: 6.75 ± 0.06 and TR/IR: 6.62 ± 0.04) compared to SD/SHAM (7.33 ± 0.05). No changes were seen for the U46619 in all groups. In conclusion, the present study shows that exercise training has no protective actions in the local blood vessel where the IR process takes place. © 2006 Elsevier Inc. All rights reserved.
Resumo:
Physical exercise induces hemodynamic/ventilatory and neuromuscular adaptations that can be reverted with interruption of the training program. The aim of the present study was to evaluate the effect of detraining on physical fitness related to health. Forty-four healthy subjects, both male and female, aged 57.6±8.9 years performed the 'Mexa-se Pró-Saúde' protocol with nutritional orientation and supervised physical exercises for nine months. The program consisted of aerobic, localized muscular endurance and flexibility exercises, with duration 80 minutes/session, five days/week. Only subjects who participated in the program for more than three days/week have been selected. The detraining period was one month. Weight (kg) and height (m) were measured and the body mass index (BMI) calculated. Additionally, motors tests to evaluate the flexibility (FLEX), strength of lower limbs (SLL) and upper limbs (SUL), and maximal oxygen uptake (VO2máx) were conducted in the beginning of the study (MI), after nine months of practicing (MT) and after detraining period (MD). ANOVA (p<0.05) and Tukey test to show the difference between groups when it evidence were used for statistical treatment. The results showed that the gains of 22% and 7% on SLL and VO2máx respectively, obtained with the training, have not changed during the detraining period; however, the flexibility gain of 8% returned back to baseline after the detraining period. BMI and SUL did not change during the study. Although the lower limbs strength gains and maximal oxygen uptake obtained have been kept, one month of detraining was enough for losing the flexibility acquired.
Resumo:
Background. Obesity has been associated with a variety of disease such as type II diabetes mellitus, arterial hypertension and atherosclerosis. Evidences have shown that exercise training promotes beneficial effects on these disorders, but the underlying mechanisms are not fully understood. The aim of this study was to investigate whether physical preconditioning prevents the deleterious effect of high caloric diet in vascular reactivity of rat aortic and mesenteric rings. Methods. Male Wistar rats were divided into sedentary (SD); trained (TR); sedentary diet (SDD) and trained diet (TRD) groups. Run training (RT) was performed in sessions of 60 min, 5 days/week for 12 weeks (70-80% VO2max). Triglycerides, glucose, insulin and nitrite/nitrate concentrations (NOx -) were measured. Concentration- response curves to acetylcholine (ACh) and sodium nitroprusside (SNP) were obtained. Expression of Cu/Zn superoxide dismutase (SOD-1) was assessed by Western blotting. Results. High caloric diet increased triglycerides concentration (SDD: 216 ± 25 mg/dl) and exercise training restored to the baseline value (TRD: 89 ± 9 mg/dl). Physical preconditioning significantly reduced insulin levels in both groups (TR: 0.54 ± 0.1 and TRD: 1.24 ± 0.3 ng/ml) as compared to sedentary animals (SD: 0.87 ± 0.1 and SDD: 2.57 ± 0.3 ng/ml). On the other hand, glucose concentration was slightly increased by high caloric diet, and RT did not modify this parameter (SD: 126 ± 6; TR: 140 ± 8; SDD: 156 ± 8 and TRD 153 ± 9 mg/dl). Neither high caloric diet nor RT modified NO x - levels (SD: 27 ± 4; TR: 28 ± 6; SDD: 27 ± 3 and TRD: 30 ± 2 μM). Functional assays showed that high caloric diet impaired the relaxing response to ACh in mesenteric (about 13%), but not in aortic rings. RT improved the relaxing responses to ACh either in aortic (28%, for TR and 16%, to TRD groups) or mesenteric rings (10%, for TR and 17%, to TRD groups) that was accompanied by up-regulation of SOD-1 expression and reduction in triglycerides levels. Conclusion. The improvement in endothelial function by physical preconditioning in mesenteric and aortic arteries from high caloric fed-rats was directly related to an increase in NO bioavailability to the smooth muscle mostly due to SOD-1 up regulation. © 2008 de Moraes et al; licensee BioMed Central Ltd.