823 resultados para Adaptive Equalization. Neural Networks. Optic Systems. Neural Equalizer


Relevância:

50.00% 50.00%

Publicador:

Resumo:

We develop an analytical approach to the susceptible-infected-susceptible epidemic model that allows us to unravel the true origin of the absence of an epidemic threshold in heterogeneous networks. We find that a delicate balance between the number of high degree nodes in the network and the topological distance between them dictates the existence or absence of such a threshold. In particular, small-world random networks with a degree distribution decaying slower than an exponential have a vanishing epidemic threshold in the thermodynamic limit.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs-locomotor bouts-matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The availability of stem cells is of great promise to study early developmental stages and to generate adequate cells for cell transfer therapies. Although many researchers using stem cells were successful in dissecting intrinsic and extrinsic mechanisms and in generating specific cell phenotypes, few of the stem cells or the differentiated cells show the capacity to repair a tissue. Advances in cell and stem cell cultivation during the last years made tremendous progress in the generation of bona fide differentiated cells able to integrate into a tissue after transplantation, opening new perspectives for developmental biology studies and for regenerative medicine. In this review, we focus on the main works attempting to create in vitro conditions mimicking the natural environment of CNS structures such as the neural tube and its development in different brain region areas including the optic cup. The use of protocols growing cells in 3D organoids is a key strategy to produce cells resembling endogenous ones. An emphasis on the generation of retina tissue and photoreceptor cells is provided to highlight the promising developments in this field. Other examples are presented and discussed, such as the formation of cortical tissue, the epithelial gut or the kidney organoids. The generation of differentiated tissues and well-defined cell phenotypes from embryonic stem (ES) cells or induced pluripotent cells (iPSCs) opens several new strategies in the field of biology and regenerative medicine. A 3D organ/tissue development in vitro derived from human cells brings a unique tool to study human cell biology and pathophysiology of an organ or a specific cell population. The perspective of tissue repair is discussed as well as the necessity of cell banking to accelerate the progress of this promising field.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In humans, action errors and perceptual novelty elicit activity in a shared frontostriatal brain network, allowing them to adapt their ongoing behavior to such unexpected action outcomes. Healthy and pathologic aging reduces the integrity of white matter pathways that connect individual hubs of such networks and can impair the associated cognitive functions. Here, we investigated whether structural disconnection within this network because of small-vessel disease impairs the neural processes that subserve motor slowing after errors and novelty (post-error slowing, PES; post-novel slowing, PNS). Participants with intact frontostriatal circuitry showed increased right-lateralized beta-band (12-24 Hz) synchrony between frontocentral and frontolateral electrode sites in the electroencephalogram after errors and novelty, indexing increased neural communication. Importantly, this synchrony correlated with PES and PNS across participants. Furthermore, such synchrony was reduced in participants with frontostriatal white matter damage, in line with reduced PES and PNS. The results demonstrate that behavioral change after errors and novelty result from coordinated neural activity across a frontostriatal brain network and that such cognitive control is impaired by reduced white matter integrity.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Neural signal processing is a discipline within neuroengineering. This interdisciplinary approach combines principles from machine learning, signal processing theory, and computational neuroscience applied to problems in basic and clinical neuroscience. The ultimate goal of neuroengineering is a technological revolution, where machines would interact in real time with the brain. Machines and brains could interface, enabling normal function in cases of injury or disease, brain monitoring, and/or medical rehabilitation of brain disorders. Much current research in neuroengineering is focused on understanding the coding and processing of information in the sensory and motor systems, quantifying how this processing is altered in the pathological state, and how it can be manipulated through interactions with artificial devices including brain–computer interfaces and neuroprosthetics.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

As technology geometries have shrunk to the deep submicron regime, the communication delay and power consumption of global interconnections in high performance Multi- Processor Systems-on-Chip (MPSoCs) are becoming a major bottleneck. The Network-on- Chip (NoC) architecture paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication issues such as performance limitations of long interconnects and integration of large number of Processing Elements (PEs) on a chip. The choice of routing protocol and NoC structure can have a significant impact on performance and power consumption in on-chip networks. In addition, building a high performance, area and energy efficient on-chip network for multicore architectures requires a novel on-chip router allowing a larger network to be integrated on a single die with reduced power consumption. On top of that, network interfaces are employed to decouple computation resources from communication resources, to provide the synchronization between them, and to achieve backward compatibility with existing IP cores. Three adaptive routing algorithms are presented as a part of this thesis. The first presented routing protocol is a congestion-aware adaptive routing algorithm for 2D mesh NoCs which does not support multicast (one-to-many) traffic while the other two protocols are adaptive routing models supporting both unicast (one-to-one) and multicast traffic. A streamlined on-chip router architecture is also presented for avoiding congested areas in 2D mesh NoCs via employing efficient input and output selection. The output selection utilizes an adaptive routing algorithm based on the congestion condition of neighboring routers while the input selection allows packets to be serviced from each input port according to its congestion level. Moreover, in order to increase memory parallelism and bring compatibility with existing IP cores in network-based multiprocessor architectures, adaptive network interface architectures are presented to use multiple SDRAMs which can be accessed simultaneously. In addition, a smart memory controller is integrated in the adaptive network interface to improve the memory utilization and reduce both memory and network latencies. Three Dimensional Integrated Circuits (3D ICs) have been emerging as a viable candidate to achieve better performance and package density as compared to traditional 2D ICs. In addition, combining the benefits of 3D IC and NoC schemes provides a significant performance gain for 3D architectures. In recent years, inter-layer communication across multiple stacked layers (vertical channel) has attracted a lot of interest. In this thesis, a novel adaptive pipeline bus structure is proposed for inter-layer communication to improve the performance by reducing the delay and complexity of traditional bus arbitration. In addition, two mesh-based topologies for 3D architectures are also introduced to mitigate the inter-layer footprint and power dissipation on each layer with a small performance penalty.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The Artificial Neural Networks (ANNs) are mathematical models method capable of estimating non-linear response plans. The advantage of these models is to present different responses of the statistical models. Thus, the objective of this study was to develop and to test ANNs for estimating rainfall erosivity index (EI30) as a function of the geographical location for the state of Rio de Janeiro, Brazil and generating a thematic visualization map. The characteristics of latitude, longitude e altitude using ANNs were acceptable to estimating EI30 and allowing visualization of the space variability of EI30. Thus, ANN is a potential option for the estimate of climatic variables in substitution to the traditional methods of interpolation.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The present study aimed at evaluating the use of Artificial Neural Network to correlate the values resulting from chemical analyses of samples of coffee with the values of their sensory analyses. The coffee samples used were from the Coffea arabica L., cultivars Acaiá do Cerrado, Topázio, Acaiá 474-19 and Bourbon, collected in the southern region of the state of Minas Gerais. The chemical analyses were carried out for reducing and non-reducing sugars. The quality of the beverage was evaluated by sensory analysis. The Artificial Neural Network method used values from chemical analyses as input variables and values from sensory analysis as output values. The multiple linear regression of sensory analysis values, according to the values from chemical analyses, presented a determination coefficient of 0.3106, while the Artificial Neural Network achieved a level of 80.00% of success in the classification of values from the sensory analysis.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Through advances in technology, System-on-Chip design is moving towards integrating tens to hundreds of intellectual property blocks into a single chip. In such a many-core system, on-chip communication becomes a performance bottleneck for high performance designs. Network-on-Chip (NoC) has emerged as a viable solution for the communication challenges in highly complex chips. The NoC architecture paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication challenges such as wiring complexity, communication latency, and bandwidth. Furthermore, the combined benefits of 3D IC and NoC schemes provide the possibility of designing a high performance system in a limited chip area. The major advantages of 3D NoCs are the considerable reductions in average latency and power consumption. There are several factors degrading the performance of NoCs. In this thesis, we investigate three main performance-limiting factors: network congestion, faults, and the lack of efficient multicast support. We address these issues by the means of routing algorithms. Congestion of data packets may lead to increased network latency and power consumption. Thus, we propose three different approaches for alleviating such congestion in the network. The first approach is based on measuring the congestion information in different regions of the network, distributing the information over the network, and utilizing this information when making a routing decision. The second approach employs a learning method to dynamically find the less congested routes according to the underlying traffic. The third approach is based on a fuzzy-logic technique to perform better routing decisions when traffic information of different routes is available. Faults affect performance significantly, as then packets should take longer paths in order to be routed around the faults, which in turn increases congestion around the faulty regions. We propose four methods to tolerate faults at the link and switch level by using only the shortest paths as long as such path exists. The unique characteristic among these methods is the toleration of faults while also maintaining the performance of NoCs. To the best of our knowledge, these algorithms are the first approaches to bypassing faults prior to reaching them while avoiding unnecessary misrouting of packets. Current implementations of multicast communication result in a significant performance loss for unicast traffic. This is due to the fact that the routing rules of multicast packets limit the adaptivity of unicast packets. We present an approach in which both unicast and multicast packets can be efficiently routed within the network. While suggesting a more efficient multicast support, the proposed approach does not affect the performance of unicast routing at all. In addition, in order to reduce the overall path length of multicast packets, we present several partitioning methods along with their analytical models for latency measurement. This approach is discussed in the context of 3D mesh networks.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The arterial partial pressure (P CO2) of carbon dioxide is virtually constant because of the close match between the metabolic production of this gas and its excretion via breathing. Blood gas homeostasis does not rely solely on changes in lung ventilation, but also to a considerable extent on circulatory adjustments that regulate the transport of CO2 from its sites of production to the lungs. The neural mechanisms that coordinate circulatory and ventilatory changes to achieve blood gas homeostasis are the subject of this review. Emphasis will be placed on the control of sympathetic outflow by central chemoreceptors. High levels of CO2 exert an excitatory effect on sympathetic outflow that is mediated by specialized chemoreceptors such as the neurons located in the retrotrapezoid region. In addition, high CO2 causes an aversive awareness in conscious animals, activating wake-promoting pathways such as the noradrenergic neurons. These neuronal groups, which may also be directly activated by brain acidification, have projections that contribute to the CO2-induced rise in breathing and sympathetic outflow. However, since the level of activity of the retrotrapezoid nucleus is regulated by converging inputs from wake-promoting systems, behavior-specific inputs from higher centers and by chemical drive, the main focus of the present manuscript is to review the contribution of central chemoreceptors to the control of autonomic and respiratory mechanisms.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The mammalian stress response is an integrated physiological and psychological reaction to real or perceived adversity. Glucocorticoids are an important component of this response, acting to redistribute energy resources to both optimize survival in the face of challenge and to restore homeostasis after the immediate challenge has subsided. Release of glucocorticoids is mediated by the hypothalamo-pituitary-adrenal (HPA) axis, driven by a neural signal originating in the paraventricular nucleus (PVN). Stress levels of glucocorticoids bind to glucocorticoid receptors in multiple body compartments, including the brain, and consequently have wide-reaching actions. For this reason, glucocorticoids serve a vital function in negative feedback inhibition of their own secretion. Negative feedback inhibition is mediated by a diverse collection of mechanisms, including fast, non-genomic feedback at the level of the PVN, stress-shut-off at the level of the limbic system, and attenuation of ascending excitatory input through destabilization of mRNAs encoding neuropeptide drivers of the HPA axis. In addition, there is evidence that glucocorticoids participate in stress activation via feed-forward mechanisms at the level of the amygdala. Feedback deficits are associated with numerous disease states, underscoring the necessity for adequate control of glucocorticoid homeostasis. Thus, rather than having a single, defined feedback ‘switch’, control of the stress response requires a wide-reaching feedback ‘network’ that coordinates HPA activity to suit the overall needs of multiple body systems.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This work presents the results of a Hybrid Neural Network (HNN) technique as applied to modeling SCFE curves obtained from two Brazilian vegetable matrices. A series Hybrid Neural Network was employed to estimate the parameters of the phenomenological model. A small set of SCFE data of each vegetable was used to generate an extended data set, sufficient to train the network. Afterwards, other sets of experimental data, not used in the network training, were used to validate the present approach. The series HNN correlates well the experimental data and it is shown that the predictions accomplished with this technique may be promising for SCFE purposes.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this study, the effects of hot-air drying conditions on color, water holding capacity, and total phenolic content of dried apple were investigated using artificial neural network as an intelligent modeling system. After that, a genetic algorithm was used to optimize the drying conditions. Apples were dried at different temperatures (40, 60, and 80 °C) and at three air flow-rates (0.5, 1, and 1.5 m/s). Applying the leave-one-out cross validation methodology, simulated and experimental data were in good agreement presenting an error < 2.4 %. Quality index optimal values were found at 62.9 °C and 1.0 m/s using genetic algorithm.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this study, an infrared thermography based sensor was studied with regard to usability and the accuracy of sensor data as a weld penetration signal in gas metal arc welding. The object of the study was to evaluate a specific sensor type which measures thermography from solidified weld surface. The purpose of the study was to provide expert data for developing a sensor system in adaptive metal active gas (MAG) welding. Welding experiments with considered process variables and recorded thermal profiles were saved to a database for further analysis. To perform the analysis within a reasonable amount of experiments, the process parameter variables were gradually altered by at least 10 %. Later, the effects of process variables on weld penetration and thermography itself were considered. SFS-EN ISO 5817 standard (2014) was applied for classifying the quality of the experiments. As a final step, a neural network was taught based on the experiments. The experiments show that the studied thermography sensor and the neural network can be used for controlling full penetration though they have minor limitations, which are presented in results and discussion. The results are consistent with previous studies and experiments found in the literature.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The freshwater mollusc Lymnaea stagnalis was utilized in this study to further the understanding of how network properties change as a result of associative learning, and to determine whether or not this plasticity is dependent on previous experience during development. The respiratory and neural correlates of operant conditioning were first determined in normally reared Lymnaea. The same procedure was then applied to differentially reared Lymnaea, that is, animals that had never experienced aerial respiration during their development. The aim was to determine whether these animals would demonstrate the same responses to the training paradigm. In normally reared animals, a behavioural reduction in aerial respiration was accompanied by numerous changes within the neural network. Specifically, I provide evidence of changes at the level of the respiratory central pattern generator and the motor output. In the differentially reared animals, there was little behavioural data to suggest learning and memory. There were, however, significant differences in the network parameters, similar to those observed in normally reared animals. This demonstrated an effect of operant conditioning on differentially reared animals. In this thesis, I have identified additional correlates of operant conditioning in normally reared animals and provide evidence of associative learning in differentially reared animals. I conclude plasticity is not dependent on previous experience, but is rather ontogenetically programmed within the neural network.