982 resultados para ATMOSPHERIC-POLLUTION
Resumo:
High pollution levels have been often observed in urban street canyons due to the increased traffic emissions and reduced natural ventilation. Microscale dispersion models with different levels of complexity may be used to assess urban air qualityand support decision-making for pollution control strategies and traffic planning. Mathematical models calculate pollutant concentrations by solving either analytically a simplified set of parametric equations or numerically a set of differential equations that describe in detail wind flow and pollutant dispersion. Street canyon models, which might also include simplified photochemistry and particle deposition–resuspension algorithms, are often nested within larger-scale urban dispersion codes. Reduced-scale physical models in wind tunnels may also be used for investigating atmospheric processes within urban canyons and validating mathematical models. A range of monitoring techniques is used to measure pollutant concentrations in urban streets. Point measurement methods (continuous monitoring, passive and active pre-concentration sampling, grab sampling) are available for gaseous pollutants. A number of sampling techniques (mainlybased on filtration and impaction) can be used to obtain mass concentration, size distribution and chemical composition of particles. A combination of different sampling/monitoring techniques is often adopted in experimental studies. Relativelysimple mathematical models have usually been used in association with field measurements to obtain and interpret time series of pollutant concentrations at a limited number of receptor locations in street canyons. On the other hand, advanced numerical codes have often been applied in combination with wind tunnel and/or field data to simulate small-scale dispersion within the urban canopy.
Resumo:
The extent and gravity of the environmental degradation of the water resources in Dhaka due to untreated industrial waste is not fully recognised in international discourse. Pollution levels affect vast numbers, but the poor and the vulnerable are the worst affected. For example, rice productivity, the mainstay of poor farmers, in the Dhaka watershed has declined by 40% over a period of ten years. The study found significant correlations between water pollution and diseases such as jaundice, diarrhoea and skin problems. It was reported that the cost of treatment of one episode of skin disease could be as high as 29% of the weekly earnings of some of the poorest households. The dominant approach to deal with pollution in the SMEs is technocratic. Given the magnitude of the problem this paper argues that to control industrial pollution by SMEs and to enhance their compliance it is necessary to move from the technocratic approach to one which can also address the wider institutional and attitudinal issues. Underlying this shift is the need to adopt the appropriate methodology. The multi-stakeholder analysis enables an understanding of the actors, their influence, their capacity to participate in, or oppose change, and the existing and embedded incentive structures which allow them to pursue interests which are generally detrimental to environmental good. This enabled core and supporting strategies to be developed around three types of actors in industrial pollution, i.e., (i) principal actors, who directly contribute to industrial pollution; (ii) stakeholders who exacerbate the situation; and (iii) potential actors in mitigation. Within a carrot-and-stick framework, the strategies aim to improve environmental governance and transparency, set up a packet to incentive for industry and increase public awareness.
Resumo:
This paper presents primary data based on research carried out as part of a large World Bank project. Results from our survey show that water pollution in Dhaka watershed has reached alarming levels and is posing significant threats to health and economic activity, particularly among the poor and vulnerable. Rice productivity in the watershed area, for example, has declined by 40% in recent years and vegetable cultivation in the riverbeds has been severely damaged. We also found significant correlation between water pollution and diseases such as jaundice, diarrhoea and skin problems. It was reported that the cost of treatment of skin diseases for one episode could be as high as 29% of the weekly earnings of poor households. Given the magnitude of the contamination problem, a multi-agent stakeholder approach was necessary to analyse the institutional and economic constraints that would need to be addressed in order to improve environmental management. This approach, in turn, enabled core strategies to be developed. The strategies were better understood around three types of actors in industrial pollution, i.e. (1) principal actors, who contribute directly to industrial pollution; (2) stakeholders, who exacerbate the situation by inaction; and (3) the potential actors in mitigation of water contamination. Within a carrot-and-stick framework, nine strategies leading to the strengthening of environmental management were explored. They aim at improving governance and transparency within public agencies and private industry through the setting up of incentive structures to advance compliance and enforcement of environmental standards. Civil society and the population at large are, on the other hand, encouraged to contribute actively to the mitigation of water pollution by improving the management of environmental information and by raising public awareness.
Resumo:
This report describes the step-by-step development the Marine Biological Association's 10 week survey of the effects of the Torrey Canyon oil spill and discusses the results of field observations and laboratory experiments. It also outlines methods developed for predicting and plotting the movement of oil at sea.
Resumo:
A consideration of some physiological (rates of oxygen consumption, the scope for growth) and cellular (the cytochemical latency of a lysosomal enzyme) processes in bivalve molluscs suggests that animal size and seasonal changes related to the gametogenic cycle are important sources of natural variability. Correcting for size using regression techniques, and limiting measurements to one part of the gametogenic cycle, reduces observed natural variability considerably. Differences between populations are then still apparent, but the results of laboratory experiments with hydrocarbons from crude oil suggest that it should be possible to detect sub-lethal effects due to pollution (the ‘signal’) in the presence of the remaining natural variability (the ‘noise’). Statistical considerations, taken together with results from current studies on Mytilus edulis and Scobicularia plana, indicate that sample sizes of 10–15 individuals should suffice for the detection of possible pollution effects. The physiological effects to be expected in the presence of sub-lethal levels of polluting hydrocarbons are on a scaie that can cause significant ecological damage to a population through a reduction in fecundity and the residual reproductive value of the individuals.
Resumo:
The nematode/copepod ratio is critically examined with a view to adding some precision to its proposed use in pollution ecology. At two unpolluted intertidal sites, differing markedly in sediment grade, the metabolic requirements of copepods are shown to be equivalent to the requirements of that fraction of the nematode population which feeds in the same way. The partitioning of this total energy requirement among individuals depends on the distribution of individual metabolic body sizes and the relative rates of metabolism. The distribution of body sizes is constrained by the sediment granulometry, which affects nematodes and copepods differently. These considerations enable precise predictions of the nematode/copepod ratios expected in unpolluted situations, against which observed ratios can be compared.
Resumo:
Certain physiological differences between individuals in different populations of the mussel, Mytilus edulis, are described. In particular, the scope for growth differs in space and time and may be used to assess the animals' physiological condition. When the required measurements are made in the field, the rates of growth predicted from the physiological data agree well with observed rates of growth. An alternative approach utilizes mussels transplanted to various waters, with indices of condition then measured in the laboratory under standard conditions; an example of this approach is illustrated. Laboratory experiments are used to equate various levels of physiological condition with fecundity, in an attempt to equate physiological effects on the individual with likely population damage. A cytochemical index of stress is described, based on the latency of lysosomal enzymes; spatial variability in this index, and its relation with the scope for growth, are discussed. Finally, the results of some experiments on the effects of petroleum hydrocarbons on mussels are described and the presence of inducible activity of NADPH-dependent tetrazolium reductase in the blood cells is demonstrated. Certain considerations that apply in adopting similar measurements of biological effects of pollution in environmental monitoring programmes are discussed.