990 resultados para ALUMINOXANE CATALYSTS
Resumo:
The dimerisation of cyclooctene (COE) to 1,9-cyclohexadecadiene, a molecule of interest to the fragrance industry, has been achieved using ruthenium catalysts in organic solvents with significantly better selectivities (47-74%) and yields (39-60%) than previously reported (34% and 30%, respectively). Grubbs' first and second generation catalysts, the Hoveyda-Grubbs' catalyst and a phosphonium alkylidene catalyst were tested in a range of organic solvents and ionic liquids (ILs), including 1:1 IL/dichloromethane mixtures and biphasic IL + pentane systems. The best results (74% selectivity, 60% yield) were obtained using Grubbs' first generation catalyst in 1,2-dichloroethane. The formation of trimer, tetramer and other higher molecular mass products were found to be favoured at low catalyst loadings (0.77 mM). Studies of metathesis reactions using 1,9-cyclohexadecadiene as substrate indicated that the monomer-dimer and monomer-trimer reactions are faster than the dimer-dimer reaction. The use of IL media allowed for the recyclability of the catalyst, although a drop in the yield of dimer generally occurred after the first run. Heterogeneized catalysts, where the IL-catalyst system was immobilised onto silica, resulted in fast reactions leading to poor yields of dimer. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Organometallic hydrogen transfer and dehydrogenation provide straightforward atom efficient routes from alcohols to a variety of chemical products. The potential of these reactions to enable the conversion of biomass to value added chemicals is discussed, with reference to the products that can be prepared from aliphatic alcohols in good isolated yield.
Resumo:
New routes for the preparation of highly active TiO2-supported Cu and CuZn catalysts have been developed for C-O coupling reactions. Slurries of a titania precursor were dip-coated onto glass beads to obtain either structured mesoporous or non-porous titania thin films. The Cu and CuZn nanoparticles, synthesized using a reduction by solvent method, were deposited onto calcined films to obtain a Cu loading of 2 wt%. The catalysts were characterized by inductively coupled plasma (ICP) spectroscopy, temperature-programmed oxidation/reduction (TPO/TPR) techniques, Cu-63 nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction (XRD), scanning and transmission electron microscopy (S/TEM-EDX) and X-ray photo-electron spectroscopy (XPS). The activity and stability of the catalysts obtained have been studied in the C-O Ullmann coupling of 4-chloropyridine and potassium phenolate. The titania-supported nanoparticles retained catalyst activity for up to 12 h. However, catalyst deactivation was observed for longer operation times due to oxidation of the Cu nanoparticles. The oxidation rate could be significantly reduced over the CuZn/TiO2 catalytic films due to the presence of Zn. The 4-phenoxypyridine yield was 64% on the Cu/nonporous TiO2 at 120 degrees C. The highest product yield of 84% was obtained on the Cu/mesoporous TiO2 at 140 degrees C, corresponding to an initial reaction rate of 104 mmol g(cat)(-1) s(-1). The activation energy on the Cu/mesoporous TiO2 catalyst was found to be (144 +/- 5) kJ mol(-1), which is close to the value obtained for the reaction over unsupported CuZn nanoparticles (123 +/- 3 kJ mol(-1)) and almost twice the value observed over the catalysts deposited onto the non-porous TiO2 support (75 +/- 2 kJ mol(-1)).
Resumo:
The performance optimisation of automotive catalysts has been the focus of a great deal of research for many years as the automotive industry has endeavored to reduce the emission of toxic and pollutant gases generated from internal combustion engines. Just as the emissions from diesel and gasoline combustion vary so do the emissions from combustion of alternative fuels such as ethanol; the variation is in both quantity and chemical composition. In particular, when ethanol is contained in the fuel, ethanol and acetaldehyde are present in the exhaust gas stream and these are two compounds which the catalytic converter has not traditionally been designed to manage. The aim of the study outlined in this paper was to assess the performance of various catalyst formulations when subjected to a representative ethanol exhaust gas mixture. Three automotive catalytic converter formulations were tested including a fully Pt sample, a PdRh three-way catalyst sample and a fully Pd sample. Initially the samples were tested using single component hydrocarbon light-off tests followed by a set of tests with carbon monoxide included as an inlet gas to observe its effect on each individual hydrocarbon oxidation. Finally, each formulation was tested using a full E85 exhaust gas mixture. The study was carried out using a synthetic gas reactor along with FTIR and FID exhaust gas analysers. All formulations showed selectivity toward acetaldehyde formation from ethanol dehydrogenation which resulted in negative acetaldehyde conversion across each of the samples during the mixture tests. The fully Pt sample was the most detrimentally affected by the introduction of carbon monoxide into the gas feed. The Pd and PdRh samples exhibited a tendency toward acetaldehyde decomposition resulting in methane and carbon monoxide formation. The Pt sample did not form methane but did form ethylene as a result of ethanol dehydration.
Resumo:
A number of different, characterised, supported and unsupported oxides of Ru(IV) and Ir(IV) have been tested for activity as a chlorine catalyst in the oxidation of brine by Ce(IV) ions. All the different materials tested gave yields of chlorine of > 90% and first-order kinetics for the reduction of the Ce(IV) ions. The samples prepared by the Adams method were the most active of the materials tested and are typified by high surface areas and appreciable activities per unit area. The kinetics of the catalysed reduction of Ce(IV) ions by brine were studied in detail using an Ru(IV) oxide prepared by the Adams method and supported on TiO2 and the results were rationalised in terms of an electrochemical model in which the rate-determining step is the diffusion-controlled reduction of Ce(IV) ions. In support of this model the measured activation energies for the oxidation of brine by Ce(IV) ions, catalysed by either a supported or unsupported Adams catalyst, were both close (18-21 kJ mol-1) to that expected for a diffusion-controlled reaction (ca. 15 kJ mol-1).
Resumo:
The kinetics of catalysis of a number of new and established heterogeneous O2 catalysts have been studied using Ce(IV) as the oxidant via both the disappearance of the Ce(IV) ions and concomitant appearance of O2. The most active of the catalysts tested utilised a PGM(IV) oxide, usually Ru or Ir, prepared by the Adams method, which appears to generate microcrystalline powders with high surface areas and optimum activities per unit area.
Resumo:
Ruthenium red, a di-mu-oxo-bridged ruthenium complex, and its oxidised form, ruthenium brown, have been studied as possible homogeneous redox catalysts for the oxidation of water to O2 by Ce(IV) ions in H2SO4 and HCIO4. In both media the Ce(IV) ions oxidised the ruthenium red to brown and, with excess of Ce(IV), decomposed the ruthenium brown irreversibly to product(s) with three weak absorption bands at 390, 523 and 593 nm. Only in HCIO4 did the decomposition product(s) appear to act as a stable O2 catalyst. Spectral evidence tentatively suggests that the active catalyst may be a hydrolysed Ru(IV) polymeric species. The rate of catalysis was proportional to the initial concentration of ruthenium red/brown and the activation energy was determined as 36 +/- 1 kJ mol-1 over the temperature range ambient to ca. 50-degrees-C. At temperatures greater than 50-degrees-C the O2 catalyst undergoes an irreversible thermal decomposition reaction.
Resumo:
The Gutmann Acceptor Number (AN), which is a quantitative measure of Lewis acidity, has been estimated using the P-31 NMR chemical shift of a probe molecule, triethylphosphine oxide, for a range of chlorometallate(III) ionic liquids, based on Group 13 metals (aluminium(III), gallium(III) and indium(III)) and the 1-octyl-3-methylimidazolium cation, at different compositions. The results were interpreted in terms of extant speciation studies of chlorometallate(III) ionic liquids, and compared with a range of standard molecular solvents and acids. The value of these data were illustrated in terms of the selection of appropriate ionic liquids for specific applications.
Resumo:
The impact of the preparation method on the activity and stability of gold supported on ceria-zirconia low temperature water-gas shift (WGS) catalysts have been investigated. The influence of the gold deposition method, nature of the gold precursor, nature of the washing solution, drying method, Ce: Zr ratio of the support and sulfation of the support have been evaluated. The highest activity catalysts were obtained using a support with a Ce: Zr mole ratio 1: 1, HAuCl4 as the gold precursor deposited via deposition precipitation using sodium carbonate as the precipitation agent and the catalyst washed with water or 0.1 M NH4OH solution. In addition, the drying used was found to be critical with drying under vacuum at room temperature found to be most effective.
Resumo:
Tetrahexahedral Pt nanocrystals (THH Pt NCs) bound by well-defined high index crystal planes offer exceptional electrocatalytic activity, owing to a high density of low-coordination surface Pt sites. We report, herein, on methanol electrooxidation at THH Pt NC electrodes studied by a combination of electrochemical techniques and in situ FTIR spectroscopy. Pure THH Pt NC surfaces readily facilitate the dissociative chemisorption of methanol leading to poisoning by strongly adsorbed CO. Decoration of the stepped surfaces by Ru adatoms increases the tolerance to poisoning and thereby reduces the onset potential for methanol oxidation by over 100 mV. The Ru modified THH Pt NCs exhibit greatly superior catalytic currents and CO2 yields in the low potential range, when compared with a commercial PtRu alloy nanoparticle catalyst. These results are of fundamental importance in terms of model nanoparticle electrocatalytic systems of stepped surfaces and also have practical significance in the development of surface tailored, direct methanol fuel cell catalysts.