999 resultados para ALPHA-GALACTOSYL DERIVATIVES
Resumo:
RGD peptide sequences are known to regulate cellular activities by interacting with α5β1, αvβ5 and αvβ3 integrin, which contributes to the wound healing process. In this study, RGDC peptide was immobilized onto chitosan derivative 1,6-diaminohexane-O-carboxymethyl-N,N,N-trimethyl chitosan (DAH-CMTMC) to display RGDC-promoting adhesion for enhanced wound healing. The efficiency of N-methylation, O-carboxymethylation and spacer grafting was quantitatively and qualitatively analyzed by (1)H NMR and FTIR, yielding 0.38 degree of substitution for N-methylation and >0.85 for O-carboxymethylation. The glass transition temperatures for chitosan derivatives were also studied. Peptide immobilization was achieved through sulfhydryl groups using sulfosuccinimidyl (4-iodoacetyl)amino-benzoate (sulfo-SIAB method). RGDC immobilized peptide onto DAH-CMTMC was found to be about 15.3μg/mg of chitosan derivative by amino acid analysis (AAA). The significant increase of human dermal fibroblast (HDF) viability in vitro over 7 days suggests that RGDC-functionalized chitosan may lead to enhanced wound healing (viability >140%). Moreover, bio-adhesion and proliferation assays confirmed that coatings of RGDC-functionalized chitosan derivatives exhibit in vitro wound healing properties by enhancing fibroblast proliferation and adhesion. These results showed that RGDC peptide-functionalized chitosan provides an optimal environment for fibroblast adhesion and proliferation.
Resumo:
Herein is reported the design and synthesis of poly(ethylene glycol) derivatives of Lamellarin D with the aim of modulating their physicochemical properties, and improving the biological activity. Mono-, di- and tri-PEG conjugates with improved solubility were obtained in 18-57% overall yields from the corresponding partially protected phenolic derivatives of Lamellarin D. Conjugates 1-9 were tested in a panel of three human tumor cell lines (MDA-MB-231 breast, A-549 lung and HT-29 colon) to evaluate their cytotoxicity. Several compounds exhibited enhanced cellular internalization, and more than 85% of the derivatives showed a lower GI50 than Lam-D. Furthermore, cell cycle arrest at G2 phase, and apoptotic cell-death pathways were determined for Lamellarin D and these derivatives.
Resumo:
Laser scanning is becoming an increasingly popular method for measuring 3D objects in industrial design. Laser scanners produce a cloud of 3D points. For CAD software to be able to use such data, however, this point cloud needs to be turned into a vector format. A popular way to do this is to triangulate the assumed surface of the point cloud using alpha shapes. Alpha shapes start from the convex hull of the point cloud and gradually refine it towards the true surface of the object. Often it is nontrivial to decide when to stop this refinement. One criterion for this is to do so when the homology of the object stops changing. This is known as the persistent homology of the object. The goal of this thesis is to develop a way to compute the homology of a given point cloud when processed with alpha shapes, and to infer from it when the persistent homology has been achieved. Practically, the computation of such a characteristic of the target might be applied to power line tower span analysis.
Resumo:
The design and synthesis of Lamellarin D conjugates with a nuclear localization signal peptide and a poly(ethylene glycol)-based dendrimer are described. Conjugates 1-4 were obtained in 8-84% overall yields from the corresponding protected Lamellarin D. Conjugates 1 and 4 are 1.4 to 3.3-fold more cytotoxic than the parent compound against three human tumor cell lines(MDA-MB-231 breast, A-549 lung, and HT-29 colon). Besides, conjugates 3, 4 showed a decrease in activity potency in BJ skin fibroblasts, a normal cell culture. Cellular internalization was analyzed and nuclear distribution pattern was observed for 4, which contains a nuclear localization signalling sequence.
Resumo:
Herein is reported the design and synthesis of poly(ethylene glycol) derivatives of Lamellarin D with the aim of modulating their physicochemical properties, and improving the biological activity. Mono-, di- and tri-PEG conjugates with improved solubility were obtained in 18-57% overall yields from the corresponding partially protected phenolic derivatives of Lamellarin D. Conjugates 1-9 were tested in a panel of three human tumor cell lines (MDA-MB-231 breast, A-549 lung and HT-29 colon) to evaluate their cytotoxicity. Several compounds exhibited enhanced cellular internalization, and more than 85% of the derivatives showed a lower GI50 than Lam-D. Furthermore, cell cycle arrest at G2 phase, and apoptotic cell-death pathways were determined for Lamellarin D and these derivatives.
Resumo:
Chalcone and its fluorinated derivatives were synthesized and photolyzed in the solid state. UV irradiation of chalcone and its monosubstituted fluorine derivatives (3- and 4-fluorchalcone) resulted in a mixture of anti-head-head (gamma-truxinic), sin-head-tail (alpha-truxilic) and anti-head-tail (epsilon-truxilic) dimers. On the other hand, upon irradiation of 3,4- and 3,5-difluorchalcone a stereoselective formation of the alpha-truxilic photodimer was observed, whereas for 2-substituted chalcones (2,3difluorchalcone, 2,5-difluorchalcone, 2,6-difluorchalcone and 2,3,4-trifluorchalcone) the beta-truxilic dimer was stereoselectively obtained. 2',3',4',5',6'-pentafluorchalcone was the less reactive of all chalcones studied and at least one of the possible photodimers, i.e the anti-head-head isomer, was identified. Irradiation of polyfluorinated chalcones such as 2,3,5,6-tetrafluor-, 2,3,4,5,6-pentafluor-, and 2,2',3,3',4,4',5,5',6,6'-decafluorchalcone led only to polymerization and/or decomposition products.
Resumo:
A rapid, expedient and enantioselective method for the synthesis of beta-hydroxy amines and monosubstituted aziridines in up to 99% e.e., via asymmetric transfer hydrogenation of a-amino ketones and cyclisation through treatment with tosyl chloride and base, is described. (1R,2R)-N-(para-toluenesulfonyl)-1,2-ethylenediamine with formic acid has been utilised as a ligand for the Ruthenium (II) catalysed enantioselective transfer hydrogenation of the ketones.The chiral 2-methyl aziridine, which is a potentially more efficient bonding agent for Rocket Solid Propellant has been successfully achieved.
Resumo:
The development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s) at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK) signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by 'RTK swapping' by interfering with PDGFRβ phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in cancer cells reveal them to be promising anticancer agents for further investigation.
Resumo:
The development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s) at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK) signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by 'RTK swapping' by interfering with PDGFRβ phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in cancer cells reveal them to be promising anticancer agents for further investigation.
Resumo:
Stigmaphyllom paralias is a herb belonging to the family Malpighiaceae that occurs in sand soil of brazilian " restinga". This is the first report regarding phytochemical study with this species. The hexane extract of the aerial parts of plant afforded the triterpenes friedelin, lupenone, 3-oxo-alpha-amirin and 3-oxo-beta-amirin, the mixture of alpha-amirinyl palmitate and stearate, lupeol and 3,4-seco-friedelan-3-oic acid. The AcOEt extract yielded the flavonoid luteolin-7-rutinoside. All compounds were characterized by analysis of spectrometric data and the fatty acids esterified with alpha-amirine were identified by GC/MS of methyl derivatives of transesterified products . This is the first natural occurence of 3,4-seco-friedelan-3-oic acid and the 13C NMR spectral data were inequivocally assigned by two-dimensional techniques. This work also permitted to correct the 13C NMR resonances attributed to methyl groups C-26 and C-27 of fridelin.
Resumo:
The [4+3] cycloaddition was utilized in order to prepare 8-oxabicyclo[3.2.1]oct-6-en-3-one (1) derivatives. The correspondent acetonide 6 was converted into several alcohols (11-16). Addition of aryllithium reagents to 6 resulted in 3-(2-fluorophenyl)-6,7-exo-isopropylidenedioxy -8-oxabicyclo[3.2.1]octan-3alpha-ol (11, 72%) and 3-(2,4-dimethoxyphenyl)-6,7-exo-isopropylidenedioxy-8-oxabicyclo[3.2.1]octan -3alpha-ol (16, 20%). The 3-butyl-6,7-exo-isopropylidenedioxy-8-oxabicyclo[3.2.1]octan-3 alpha-ol (15, 56%) was obtained through a Grignard reaction. Reduction of 6 resulted in 6,7-exo-isopropylidenedioxy-8-oxabicyclo[3.2.1]octan-3 beta-ol (7, 62%) and 6,7-exo-isopropylidenedioxy-8-oxabicyclo[3.2.1]octan-3 alpha-ol (8, 20%). The alcohols were treated with thionyl chloride in pyridine, and the corresponding alkenes were obtained with 31-80% yield. The effect of these compounds on the development of radicle and aerial parts of Sorghum bicolor was evaluated.
High-Performance-Tensile-Strength Alpha-Grass Reinforced Starch-Based Fully Biodegradable Composites
Resumo:
Though there has been a great deal of work concerning the development of natural fibers in reinforced starch-based composites, there is still more to be done. In general, cellulose fibers have lower strength than glass fibers; however, their specific strength is not far from that of fiberglass. In this work, alpha-fibers were obtained from alpha-grass through a mild cooking process. The fibers were used to reinforce a starch-based biopolymer. Composites including 5 to 35% (w/w) alpha-grass fibers in their formulation were prepared, tested, and subsequently compared with those of wood- and fiberglass-reinforced polypropylene (PP). The term “high-performance” refers to the tensile strength of the studied composites and is mainly due to a good interphase, a good dispersion of the fibers inside the matrix, and a good aspect ratio. The tensile strength of the composites showed a linear evolution for fiber contents up to 35% (w/w). The strain at break of the composites decreased with the fiber content and showed the stiffening effects of the reinforcement. The prepared composites showed high mechanical properties, even approaching those of glass fiber reinforced composites
Resumo:
Production of antimicrobial peptides in plants constitutes an approach for obtaining them in high amounts. However, their heterologous expression in a practical and efficient manner demands some structural requirements such as a minimum size, the incorporation of retention signals to assure their accumulation in specific tissues, and the presence of protease cleavage amino acids and of target sequences to facilitate peptide detection. Since any sequence modification may influence the biological activity, peptides that will be obtained from the expression must be screened prior to the synthesis of the genes for plant transformation. We report herein a strategy for the modification of the antimicrobial undecapeptide BP100 that allowed the identification of analogues that can be expressed in plants and exhibit optimum biological properties. We prepared 40 analogues obtained by incorporating repeated units of the antimicrobial undecapeptide, fragments of natural peptides, one or two AGPA hinges, a Gly or Ser residue at the N-terminus, and a KDEL fragment and/or the epitope tag54 at the C-terminus. Their antimicrobial, hemolytic and phytotoxic activities, and protease susceptibility were evaluated. Best sequences contained a magainin fragment linked to the antimicrobial undecapeptide through an AGPA hinge. Moreover, since the presence of a KDEL unit or of tag54 did not influence significantly the biological activity, these moieties can be introduced when designing compounds to be retained in the endoplasmic reticulum and detected using a complementary epitope. These findings may contribute to the design of peptides to be expressed in plants
Resumo:
Poly-L-alanine forms stable right-handed alpha-helices, whereas Poly-D-alanine is stable as left-handed alpha helices.
Resumo:
A series of heterocyclic compounds with a 4-thiazolidone nucleus and amino acyl moiety were synthesized by protection reaction of thiosemicarbazide using the symmetrical anhydride (Boc)2O and cyclization with chloroacetic acid under mild conditions. Trifluoroacetic acid was used to obtain 4-thiazolidone and the alpha-amino acid condensation reactions were carried out using strategies for peptide synthesis. The characterization of this new class of compounds was performed using IR and ¹H-NMR spectroscopy.