943 resultados para AL-ALLOY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental characterization of three-phase equilibria in Fe--V--O and Fe--Nb--O systems at 1823, 1873 and 1923K has been carried out using a solid state cell and by analysis of quenched samples. The oxygen potentials corresponding to these three-phase equilibria were monitored by a solid state cell incorporating Y sub 2 O sub 3 doped ThO sub 2 with Cr + Cr sub 2 O sub 3 as reference electrode. Similar measurements were carried out for Fe--Nb--O alloys in equilibrium with a mixture of FeNb sub 2 O sub 6 and NbO sub 2 . These measurements permit evaluation of interaction parameters (e exp V sub O = --6590/T + 2.892 and e exp Nb sub O = --4066/T + 1.502) and activity coefficients of vanadiun and niobium in dilute solution (ln gamma exp O sub V = --35 320/T + 12.68 and ln gamma sub Nb exp O = --12 386/T + 4.34) in liquid iron. The results obtained in this study resolve a number of discrepancies in thermodynamic data reported in the literature, especially regarding the activity coefficients of V and Nb and the stability ranges for V sub 2 O sub 3 and VO sub 1+x . 18 ref.--AA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concentration and chemical potential of oxygen in liquid Fe--Mn alloys equilibrated with the spinel solution, (Fe, Mn)Al sub 2+2x O sub 4+3x , and alpha -Al sub 2 O sub 3 have been determined at 1873K as a function of manganese concentration. The composition of the spinel phase has been determined using electron probe microanalysis. The results are compared with data reported in the literature. The deoxidation equilibrium has been computed using data on free energy of solution of oxygen in liquid iron, free energies of formation of hercynite and galaxite, and interaction parameters reported in the literature. The activity--composition relationship in spinel solution was derived from a cation distribution model. The model is in excellent agreement with the experimental data on oxygen concentration and potential and the composition of the spinel phase. 23 ref.--AA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified solution combustion technique was successfully used to synthesize sub-10 nm crystallites of hybrid CeO(2)-Al(2)O(3)-CeAlO(3). The fuel in the solution combustion was tuned to obtain mixed oxides and solid solutions of the compound. The compounds were characterized by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. XRD and TEM analysis showed the substitution of Al(3+) ions in the CeO(2) matrix when a combination of glycine, urea, hexamine and oxalyl dihydrazide was used as fuel for the synthesis. The compounds showed high activity for CO oxidation and the activity of the compounds was dependent upon the composition of the oxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity of strontium in liquid Al-Sr alloys (X(Sr) less-than-or-equal-to 0.17) at 1323 K has been determined using the Knudsen effusion-mass loss technique. At higher concentrations (X(Sr) greater-than-or-equal-to 0.28), the activity of strontium has been determined by the pseudoisopiestic technique. Activity of aluminium has been derived by Gibbs-Duhem integration. The concentration - concentration structure factor of Bhatia and Thornton at zero wave vector has been computed from the thermodynamic data. The behaviour of the mean square thermal fluctuation in composition and the thermodynamic mixing functions suggest association tendencies in the liquid state. The associated solution model with Al2Sr as the predominant complex can account for the properties of the liquid alloy. Thermodynamic data for the intermetallic compunds in the Al-Sr system have been derived using the phase diagram and the Gibbs' energy and enthalpy of mixing of liquid alloys. The data indicate the need for redetermination of the phase diagram near the strontium-rich corner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel solid-state electrochemical sensors have been designed using the Mg2+ cation conductors incorporating novel solid-state reference electrodes for in-line monitoring of Mg in molten Al during the refining process and also for in-line monitoring of Mg content in molten Al in the alloying process. In this paper we report the preparation of Mg2+ ion conductors, MgAl2O4 and MgZr4(PO4)6, by the solid state ceramic synthesis route, measurement of their electrical properties using ac-impedance spectroscopy and application of the above cation conductors for designing novel electrochemical sensors for monitoring Mg dissolved in molten Al. The activation energy for Mg2+ ion conduction in MgAl2O4 is 2.08 eV and in MgZr4(PO4)6 is 1.7 eV, respectively. The sensors have been found to respond rapidly to change in Mg content in molten aluminium around 1000 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although Al(1-x)Ga(x)N semiconductors are used in lighting, displays and high-power amplifiers, there is no experimental thermodynamic information on nitride solid solutions. Thermodynamic data are useful for assessing the intrinsic stability of the solid solution with respect to phase separation and extrinsic stability in relation to other phases such as metallic contacts. The activity of GaN in Al(1-x)Ga(x)N solid solution is determined at 1100 K using a solid-state electrochemical cell: Ga + Al(1-x)Ga(x)N/Fe, Ca(3)N(2)//CaF(2)//Ca(3)N(2), N(2) (0.1 MPa), Fe. The solid-state cell is based on single crystal CaF(2) as the electrolyte and Ca(3)N(2) as the auxiliary electrode to convert the nitrogen chemical potential established by the equilibrium between Ga and Al(1-x)Ga(x)N solid solution into an equivalent fluorine potential. Excess Gibbs free energy of mixing of the solid solution is computed from the results. Results suggest an unusual mixing behavior: a mild tendency for ordering at three discrete compositions (x = 0.25, 0.5 and 0.75) superimposed on predominantly positive deviation from ideality. The lattice parameters exhibit slight deviation from Vegard's law, with the a-parameter showing positive and the c-parameter negative deviation. Although the solid solution is stable in the full range of compositions at growth temperatures, thermodynamic instability is indicated at temperatures below 410 K in the composition range 0.26 <= x <= 0.5. At 355 K, two biphasic regions appear, with terminal solid solutions stable only for 0 <= x <= 0.26 and 0.66 <= x <= 1. The range of terminal solid solubility reduces with decreasing temperature. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of deposition temperature on residual stress evolution with temperature in Ti-rich NiTi films deposited on silicon substrates was studied. Ti-rich NiTi films were deposited on 3? Si (100) substrates by DC magnetron sputtering at three deposition temperatures (300, 350 and 400 degrees C) with subsequent annealing in vacuum at their respective deposition temperatures for 4 h. The initial value of residual stress was found to be the highest for the film deposited and annealed at 400 degrees C and the lowest for the film deposited and annealed at 300 degrees C. All the three films were found to be amorphous in the as-deposited and annealed conditions. The nature of the stress response with temperature on heating in the first cycle (room temperature to 450 degrees C) was similar for all three films although the spike in tensile stress, which occurs at similar to 330 degrees C, was significantly higher in the film deposited and annealed at 300 degrees C. All the films were also found to undergo partial crystallisation on heating up to 450 degrees C and this resulted in decrease in the stress values around 5560 degrees C in the cooling cycle. The stress response with temperature in the second thermal cycle (room temperature to 450 degrees C and back), which is reflective of the intrinsic film behaviour, was found to be similar in all cases and the elastic modulus determined from the stress response was also more or less identical. The three deposition temperatures were also not found to have a significant effect on the transformation characteristics of these films such as transformation start and finish temperatures, recovery stress and hysteresis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generalized enthalpy update scheme is presented for evaluating solid and liquid fractions during the solidification of binary alloys, taking solid movement into consideration. A fixed-grid, enthalpy-based method is developed such that the scheme accounts for equilibrium as well as for nonequilibrium solidification phenomena, along with solid phase movement. The effect of solid movement on the solidification interface shape and macrosegregation is highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the first successful attempt to produce simultaneously ultrafine grain size and weak texture in a single-phase magnesium alloy Mg-3Al-0.4Mn through an optimal choice of processing parameters in a modified multi-axial forging (MAF) process. An average grain size of similar to 0.4 mu m and a weak texture could be achieved. This has led to an increase in the strength as well as room-temperature ductility (55%). The plot of the yield loci shows a decrease in anisotropy after MAF. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research is focused on understanding the role of microstructural variables and processing parameters in obtaining optimised dual phase structures in medium carbon low alloy steels. Tempered Martensite structures produced at 300, 500, and 650 degrees C, were cold rolled to varied degrees ranging from 20 to 80% deformation. Intercritical annealing was then performed at 740, 760, and 780 degrees C for various time duration ranging from 60 seconds to 60 minutes before quenching in water. The transformation behaviour was studied with the aid of optical microscopy and hardness curves. From the results, it is observed that microstructural condition, deformation, and intercritical temperatures influenced the chronological order of the competing stress relaxation and decomposition phase reactions which interfered with the rate of the expected alpha -> gamma transformation. The three unique transformation trends observed are systematically analyzed. It was also observed that the 300 and 500 degrees C tempered initial microstructures were unsuitable for the production of dual structures with optimized strength characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Creep properties of QE22 magnesium based alloy and composites reinforced with 20 volume percent of short-fibers - Maftech (R), Saffil (R) or Supertech (R), were evaluated using the impression creep test. In the impression creep test, a load is applied with the help of a cylindrical tungsten carbide indenter of 1 mm diameter. This has advantages over conventional creep testing in terms of small specimen size requirement and simple machining. Depth of impression is recorded with time and steady state strain rate is obtained from the slope of the secondary strain (depth of impression divided by indenter diameter) vs. time plot. The results are compared with the creep obtained from conventional creep performed in tension on the same materials earlier. Microstructural examination of the plastically deformed regions is carried out to explain creep behaviour of these composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the formation omega phase in the remelted layers during laser cladding and remelting of quasicrystal forming Al65Cu23.3Fe11.7 alloy on pure aluminum. The omega phase is absent in the clad layers. In the remelted layer, the phase nucleates at the periphery of the primary icosahedral phase particles. A large number of omega phase particles forms enveloping the icosahedral phase growing into aluminum rich melt, which solidify as alpha-Al solid solution. On the other side it develops an interface with aluminum. A detailed transmission electron microscopic analysis shows that omega phase exhibits orientation relationship with icosahedral phase. The composition analysis performed using energy dispersive x-ray analyzer suggests that this phase has composition higher aluminum than the icosahedral phase. The analysis of the available phase diagram information indicates that the present results represent large departure from equilibrium conditions. A possible scenario of the evolution of the omega phase has been suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the results of the electrical switching studies performed on the bulk Al20GexTe80-x (2.5 less than or equal to x less than or equal to 15) chalcogenide glasses. The well known topological features, mechanical and chemical thresholds are observed. Mechanical threshold is seen at a mean coordination number of atoms, < r > = 2.50 (x = 5) a clear shift rom the mean field value of < r > = 2.4 whereas the chemical threshold is observed at < r > = 2.65 (x = 12.5) as predicted by the chemically ordered covalent network model These experiments are a sequel to similar experiments on Al20AsxTe80-x glasses in which mechanical threshold was seen at < r > = 2.60 and no chemical threshold was observed These results am well understood by a chemical bond picture developed in this article.