949 resultados para ADVANCED GLYCATION END PRODUCTS (AGE)
Resumo:
Mid-Miocene pelagic sedimentary sections can be correlated using intermediate and high resolution oxygen and carbon isotopic records of benthic foraminifera. Precision of a few tens of thousands of years is readily achievable at sites with high sedimentation rates, for example, Deep Sea Drilling Project sites 289 and 574. The mid-Miocene carbon isotope records are characterized by an interval of high d13C values between 17 and 13.5 Ma (the Monterey Excursion of Vincent and Berger 1985) upon which are superimposed a series of periodic or quasi-periodic fluctuations in d13C values. These fluctuations have a period of approximately 440 kyr, suggestive of the 413 kyr cycle predicted by Milankovitch theory. Vincent and Berger proposed that the Monterey Excursion was the result of increased organic carbon burial in continental margins sediments. The increased d13C values (called 13C maxima) superimposed on the generally high mid-Miocene signal coincide with increases in d18O values suggesting that periods of cooling and/or ice buildup were associated with exceptionally rapid burial of organic carbon and lowered atmospheric CO2 levels. It is likely that during the Monterey Excursion the ocean/atmosphere system became progressively more sensitive to small changes in insolation, ultimately leading to major cooling of deep water and expansion of continental ice. We have assigned an absolute chronology, based on biostratigraphic and magneto-biostratigraphic datum levels, to the isotope stratigraphy and have used that chronology to correlate unconformities, seismic reflectors, carbonate minima, and dissolution intervals. Intervals of sediment containing 13C maxima are usually better preserved than the overlying and underlying sediments, indicating that the d13C values of TCO2 in deep water and the corrosiveness of seawater are inversely correlated. This again suggests that the 13C maxima were associated with rapid burial of organic carbon and reduced levels of atmospheric CO2. The absolute chronology we have assigned to the isotopic record indicates that the major mid-Miocene deepwater cooling/ice volume expansion took 2 m.y. and was not abrupt as had been reported previously. The cooling appears abrupt at many sites because the interval is characterized by a number of dissolution intervals. The cooling was not monotonic, and the 2 m.y. interval included an episode of especially rapid cooling as well as a brief return to warmer conditions before the final phase of the cooling period. The increase in d18O values of benthic foraminifera between 14.9 and 12.9 Ma was greatest at deeper water sites and at sites closest to Antarctica. The data suggest that the d18O value of seawater increased by no more than about 1.1 per mil during this interval and that the remainder of the change in benthic d18O values resulted from cooling in Antarctic regions of deepwater formation. Equatorial planktonic foraminifera from sites 237 and 289 exhibit a series of 0.4 per mil steplike increases in d13C values. Only one of these increases in planktonic d13C is correlated with any of the features in the mid-Miocene benthic carbon isotope record.
Resumo:
Since studies on deep-sea cores were carried out in the early 1990s it has been known that ambient temperature may have a marked affect on apatite fission track annealing. Due to sluggish annealing kinetics, this effect cannot be quantified by laboratory annealing experiments. The unknown amount of low-temperature annealing remains one of the main uncertainties for extracting thermal histories from fission track data, particularly for samples which experienced slow cooling in shallow crustal levels. To further elucidate these uncertainties, we studied volcanogenic sediments from five deep-sea drill cores, that were exposed to maximum temperatures between ~10° and 70°C over geological time scales of ~15-120 Ma. Mean track lengths (MTL) and etch pit diameters (Dpar) of all samples were measured, and the chemical composition of each grain analyzed for age and track length measurements was determined by electron microprobe analysis. Thermal histories of the sampled sites were independently reconstructed, based on vitrinite reflectance measurements and/or 1D numerical modelling. These reconstructions were used to test the most widely used annealing models for their ability to predict low-temperature annealing. Our results show that long-term exposure to temperatures below the temperature range of the nominal apatite fission track partial annealing zone results in track shortening ranging between 4 and 11%. Both chlorine content and Dpar values explain the downhole annealing patterns equally well. Low chlorine apatite from one drill core revealed a systematic relation between Si-content and Dpar value. The question whether Si-substitution in apatite has direct and systematic effects on annealing properties however, cannot be addressed by our data. For samples, which remained at temperatures <30°C, and which are low in chlorine, the Laslett et al. [Laslett G., Green P., Duddy I. and Gleadow A. (1987) Thermal annealing of fission tracks in apatite. Chem. Geol. 65, 1-13] annealing model predicts MTL up to 0.6 µm longer than those actually measured, whereas for apatites with intermediate to high chlorine content, which experienced temperatures >30°C, the predictions of the Laslett et al. (1987) model agree with the measured MTL data within error levels. With few exceptions, predictions by the Ketcham et al. [Ketcham R., Donelick R. and Carlson W. (1999) Variability of apatite fission-track annealing kinetics. III: Extrapolation to geological time scales. Am. Mineral. 84/9, 1235-1255] annealing model are consistent with the measured data for samples which remained at temperatures below ~30°C. For samples which experienced maximum temperatures between ~30 and 70°C, and which are rich in chlorine, the Ketcham et al. (1999) model overestimates track annealing.
Resumo:
A benthic isotope record has been measured for core SO75-26KL from the upper Portuguese margin (1099 m water depth) to monitor the response of thermohaline overturn in the North Atlantic during Heinrich events. Evaluating benthic delta18O in TS diagrams in conjunction with equilibrium deltac fractionation implies that advection of Mediterranean outflow water (MOW) to the upper Portuguese margin was significantly reduced during the last glacial (< 15% compared to 30% today). The benthic isotope record along core SO75-26KL therefore primarily monitors variability of glacial North Atlantic conveyor circulation. The 14C-accelerator mass spectrometry ages of 13.54±.07 and 20.46±.12 ka for two ice-rafted detritus (IRD) layers in the upper core section and an interpolated age of 36.1 ka for a third IRD layer deeper in the core are in the range of published 14C ages for Heinrich events H1, H2, and H4. Marked depletion of benthic delta13C by 0.7-1.1 per mil during the Heinrich events suggests reduced thermohaline overturn in the North Atlantic during these events. Close similarity between meltwater patterns (inferred from planktonic delta18O) at Site 609 and ventilation patterns (inferred from benthic delta13C) in core SO75-26KL implies coupling between thermohaline overturn and surface forcing, as is also suggested by ocean circulation models. Benthic delta13C starts to decrease 1.5-2.5 kyr before Heinrich events Hl and H4, fully increased values are reached 1.5-3 kyr after the events, indicating a successive slowdown of thermohaline circulation well before the events and resumption of the conveyor's full strength well after the events. Benthic delta13C changes in the course of the Heinrich events show subtle maxima and minima suggesting oscillatory behavior of thermohaline circulation, a distinct feature of thermohaline instability in numerical models. Inferrred gradual spin-up of thermohaline circulation after Hl and H4 is in contrast to abrupt wanning in the North Atlantic region that is indicated by sudden increases in Greenland ice core delta18O and in marine faunal records from the northern North Atlantic. From this we infer that thermohaline circulation can explain only in part the rapid climatic oscillations seen in glacial sections of the Greenland ice core record.
Resumo:
Marine-derived amorphous organic matter dominates hemipelagic and trench sediments in and around the Middle America Trench. These sediments contain, on the average, 1% to 2% total organic carbon (TOC), with a maximum of 4.8%. Their organic facies and richness reflect (1) the small land area of Guatemala, which contributes small amounts of higher land plant remains, and (2) high levels of marine productivity and regionally low levels of dissolved oxygen, which encourage deposition and preservation of marine organic remains. These sediments have good potential for oil but are now immature. For this reason, gaseous hydrocarbons like the ethane identified in the deep parts of the section, as at Sites 496 and 497, are probably migrating from a mature section at depth. The pelagic sediments of the downgoing Cocos Plate are lean in organic carbon and have no petroleum potential
Resumo:
Changes in Atlantic deep water circulation were reconstructed by comparing the benthic foraminiferal delta13C record at ODP Site 1090 in the South Atlantic with similar records from the North Atlantic (Sites 982, 607, 925, 929) and deep Pacific (Site 849) oceans. Important deep water circulation changes occurred in the early Pleistocene at 1.55 Myr and during the Mid-Pleistocene Transition at 0.9 Myr. At 1.55 Myr, glacial delta13C values in the Southern Ocean became significantly lower than those in the deep Pacific, establishing a pattern that persisted throughout the late Pleistocene. We propose that the lowering of delta13C values of Southern Component Water (SCW) at this time resulted from expansion of sea ice and reduced ventilation of deep water during glacial periods after marine isotope stage 52. Accompanying this change in Southern Ocean deep water circulation was enhanced interhemispheric coupling between the North and South Atlantic after 1.55 Myr. At ~0.9 Myr, the magnitude of glacial-to-interglacial variabilityin delta13C increased and shifted to a longer frequency (100 kyr) along with oceanic delta18O (ice volume). Calculation of percent Northern Component Water (NCW) using Site 1090 as the SCW end member yielded 20-30% less reduction of NCW during glacial periods of the late Pleistocene. Also, a trend toward reduced glacial suppression of NCW during the past 400 kyr is not evident. The apparent decoupling of ice volume and deep water circulation reported previously maybe an artifact of using a Pacific, rather than a Southern Ocean, carbon isotopic record to calculate past mixing ratios of NCW and SCW.
Resumo:
A suit of sediment cores close to and south of the Strait of Gibraltar (12°-36°N, 500-2800 m water depth) were analyzed for stable isotopes in epibenthic foraminifers Cibicidoides wuellerstorfi and Planulina ariminensis. During peak glacial times, the data exhibit higher delta13C values of up to 1.6 per mil at intermediate depths near the Strait of Gibraltar (36°N). The values decrease to the south as evidenced by our data, but also to the north as revealed by data of intermediate depth cores north of 38°N (in Duplessy et al. (1987)). Thus, the distribution pattern of delta13C provides crucial evidence for an increased influence of nutrient depleted Mediterranean Outflow Water (MOW) on the glacial northeast Atlantic hydrography. During oxygen isotope Terminations I and II, the meridional carbon isotope gradient indicates a significantly decreased but still active MOW. As deduced from the delta18O fluctuations, the temperatures of the MOW in the Atlantic were lower during glacial times by as much as 5°C. During glacial times and during Termination I the maximum delta13C values of the MOW correlate with minimum values of the North Atlantic Deep Water (NADW) and vice versa. This inverse response to climatic change of the carbon isotope signals of both water masses indicates, that the supply of saline MOW to the north Atlantic may be less important for the formation of NADW than previously assumed.
Resumo:
In summary, one may conclude that human influence in the Bokanjac area started in the Eneolithic or Earlier Bronze Age - the third to second millennia Cal. BC. Traces of agriculture are weak or missing in the pollen diagram but grazing is indicated. Chestnut and walnut were introduced by humans to the area in classical times. These findings are in general agreement with the results of earlier studies at coastal sites north-west and south-east of Bokanjacko Blato.
Resumo:
In the largest global cooling event of the Cenozoic Era, between 33.8 and 33.5 Myr ago, warm, high-CO2 conditions gave way to the variable 'icehouse' climates that prevail today. Despite intense study, the history of cooling versus ice-sheet growth and sea-level fall reconstructed from oxygen isotope values in marine sediments at the transition has not been resolved. Here, we analyse oxygen isotopes and Mg/Ca ratios of benthic foraminifera, and integrate the results with the stratigraphic record of sea-level change across the Eocene-Oligocene transition from a continental-shelf site at Saint Stephens Quarry, Alabama. Comparisons with deep-sea (Sites 522 (South Atlantic) and 1218 (Pacific)) d18O and Mg/Ca records enable us to reconstruct temperature, ice-volume and sea-level changes across the climate transition. Our records show that the transition occurred in at least three distinct steps, with an increasing influence of ice volume on the oxygen isotope record as the transition progressed. By the early Oligocene, ice sheets were ~25% larger than present. This growth was associated with a relative sea-level decrease of approximately 105 m, which equates to a 67 m eustatic fall.
Resumo:
Petrographic and geochemical study of basalts in the Kerguelen Plateau basement revealed changes in composition and character of volcanism during development of this tectonovolcanic structure. The Kerguelen Plateau is one of the largest intraplate rises in the World Ocean. It started to form about 120 Ma ago. Age of basalts and overlying sediments shows that plateau formation was in the northwest direction. Basalts of the Kerguelen Plateau basement are products of tholeiitic melts in terms of geochemistry, but differ from mid-ocean ridge basalt (MORB). They are enriched in incompatible trace elements and rare earth elements (REE) relative to MORB, and degree of enrichment varies in basalts from different segments of the plateau. Composition of basalts does not directly depend on their age. Specific features of plateau magmatism are commonly explained in terms of a long-living deep magma plume, which variously interacted with a depleted upper mantle source at different stages of plateau formation. However, taking into account block morphology and deep structure of the plateau, one can suggest that plateau volcanism was initiated by a large fault. As the volcanism prograded to the northwest, depth of fault penetration into the mantle changed. Composition of basalts in the plateau basement was also governed by formation depth of primary melts.